Operator Reference
add_dl_pruning_batch (Operator)
add_dl_pruning_batch
— Calculate scores to prune a deep learning model.
Signature
add_dl_pruning_batch( : : DLModelHandleToPrune, DLPruningHandle, DLSampleBatch : )
Description
add_dl_pruning_batch
calculates pruning scores for the deep
learning model DLModelHandleToPrune
.
More precisely, the scores are calculated on the images given in
DLSampleBatch
and internally accumulated by each call of
add_dl_pruning_batch
in the pruning data handle
DLPruningHandle
.
The parameter DLModelHandleToPrune
specifies the deep learning
model to use.
Note that add_dl_pruning_batch
supports only deep learning
models of type 'classification' .
The parameter DLPruningHandle
specifies the pruning data handle,
which is used to pass information as e.g., the accumulated scores or the
pruning mode.
See create_dl_pruning
for further information about implemented
pruning modes.
The parameter DLSampleBatch
specifies the batch with input images
based on which the scores are calculated.
Note that the number of images in the tuple DLSampleBatch
needs to
be equal to the value set for the model parameter 'batch_size' .
For an explanation of the concept of deep learning see the introduction of chapter Deep Learning.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
DLModelHandleToPrune
(input_control) dl_model →
(handle)
Handle of a deep learning model to prune.
DLPruningHandle
(input_control) dl_pruning →
(handle)
Pruning data handle.
DLSampleBatch
(input_control) dict-array →
(handle)
Tuple of dictionaries with input images.
Possible Predecessors
read_dl_model
,
create_dl_pruning
,
set_dl_pruning_param
Possible Successors
get_dl_pruning_param
,
gen_dl_pruned_model
Module
Deep Learning Professional