Operator Reference

bilateral_filterbilateral_filterBilateralFilterBilateralFilterbilateral_filter (Operator)

bilateral_filterbilateral_filterBilateralFilterBilateralFilterbilateral_filter — bilateral filtering of an image.

Signature

Herror bilateral_filter(const Hobject Image, const Hobject ImageJoint, Hobject* ImageBilateral, double SigmaSpatial, double SigmaRange, const char* GenParamName, double GenParamValue)

Herror T_bilateral_filter(const Hobject Image, const Hobject ImageJoint, Hobject* ImageBilateral, const Htuple SigmaSpatial, const Htuple SigmaRange, const Htuple GenParamName, const Htuple GenParamValue)

void BilateralFilter(const HObject& Image, const HObject& ImageJoint, HObject* ImageBilateral, const HTuple& SigmaSpatial, const HTuple& SigmaRange, const HTuple& GenParamName, const HTuple& GenParamValue)

HImage HImage::BilateralFilter(const HImage& ImageJoint, double SigmaSpatial, double SigmaRange, const HTuple& GenParamName, const HTuple& GenParamValue) const

HImage HImage::BilateralFilter(const HImage& ImageJoint, double SigmaSpatial, double SigmaRange, const HString& GenParamName, double GenParamValue) const

HImage HImage::BilateralFilter(const HImage& ImageJoint, double SigmaSpatial, double SigmaRange, const char* GenParamName, double GenParamValue) const

HImage HImage::BilateralFilter(const HImage& ImageJoint, double SigmaSpatial, double SigmaRange, const wchar_t* GenParamName, double GenParamValue) const   ( Windows only)

def bilateral_filter(image: HObject, image_joint: HObject, sigma_spatial: float, sigma_range: float, gen_param_name: MaybeSequence[str], gen_param_value: MaybeSequence[Union[int, float, str]]) -> HObject

Description

bilateral_filterbilateral_filterBilateralFilterBilateralFilterbilateral_filter performs a joint bilateral filtering on the input ImageImageImageimageimage using the guidance image ImageJointImageJointImageJointimageJointimage_joint and returns the result in ImageBilateralImageBilateralImageBilateralimageBilateralimage_bilateral. ImageImageImageimageimage and ImageJointImageJointImageJointimageJointimage_joint must be of the same size and type.

SigmaSpatialSigmaSpatialSigmaSpatialsigmaSpatialsigma_spatial defines the size of the filter mask and corresponds to the standard deviation of a conventional Gauss filter. Bigger values increase the area of influence of the filter and less detail is preserved.

SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range is used to modify the filter mask depending on the pixels of ImageJointImageJointImageJointimageJointimage_joint around the current pixel. Only pixels in areas with weak edges that have a contrast lower than SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range contribute to the smoothing. Please note that the contrast in uint2 or real images may differ significantly from the default values of SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range and adjust the parameter accordingly.

GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value currently can be used to control the trade-off between accuracy and speed (see below).

Influence of the Joint Image

Each pixel of ImageImageImageimageimage is filtered with a filter mask that depends on ImageJointImageJointImageJointimageJointimage_joint. The filter mask combines a Gaussian closeness function depending on SigmaSpatialSigmaSpatialSigmaSpatialsigmaSpatialsigma_spatial and a Gaussian similarity function that weights gray value differences depending on SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range.

Examples for local filter masks depending on ImageJointImageJointImageJointimageJointimage_joint: Left: In homogeneous areas the filter mask is nearly Gaussian. Center: The filter mask follows the line. That means, only the dark pixels are smoothed and the edge is preserved. Right: The filter mask resembles the corner. Note that the filter mask extends across the shadow into areas with similar gray values.

If ImageImageImageimageimage and ImageJointImageJointImageJointimageJointimage_joint are identical, bilateral_filterbilateral_filterBilateralFilterBilateralFilterbilateral_filter behaves like an edge-preserving smoothing where SigmaSpatialSigmaSpatialSigmaSpatialsigmaSpatialsigma_spatial defines the size of the filter mask. Pixels at edges that have a contrast significantly greater than SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range are preserved, while pixels in homogeneous areas are smoothed.

If ImageImageImageimageimage and ImageJointImageJointImageJointimageJointimage_joint are different, each pixel of ImageImageImageimageimage is smoothed with a filter mask that is influenced by ImageJointImageJointImageJointimageJointimage_joint. Pixels at positions where ImageJointImageJointImageJointimageJointimage_joint has strong edges with a contrast significantly greater than SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range are smoothed less than pixels in homogeneous areas.

If ImageJointImageJointImageJointimageJointimage_joint is constant, bilateral_filterbilateral_filterBilateralFilterBilateralFilterbilateral_filter is equivalent to a Gaussian smoothing with SigmaSpatialSigmaSpatialSigmaSpatialsigmaSpatialsigma_spatial (see gauss_filtergauss_filterGaussFilterGaussFiltergauss_filter or smooth_imagesmooth_imageSmoothImageSmoothImagesmooth_image).

Influence of the smoothing parameters

The following examples show the influence of SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range on an artificial image. In this image, the noise level is 10 gray values, the left edge has a contrast of 50 gray values, the right edge has a contrast of 100 gray values. The yellow line shows a gray-value profile of a horizontal cross section.

Original image with overlaid gray profile, used as ImageImageImageimageimage and ImageJointImageJointImageJointimageJointimage_joint.
Filter result with SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range = 1: No effect because SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range is below noise level. Therefore noise is treated as edge and preserved.
Filter result with SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range = 25: Noise is smoothed, edges are preserved.
Filter result with SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range = 50: The weaker edge is smoothed, the stronger edge is preserved.
Filter result with SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range = 100: Both edges are smoothed.

Generic Parameters

The following values for GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name are supported:

'sampling_method'"sampling_method""sampling_method""sampling_method""sampling_method"

Per default, bilateral_filterbilateral_filterBilateralFilterBilateralFilterbilateral_filter uses an approximation of the bilateral filter that only uses a subset of sampled points for the calculation of the local filter masks.

By setting 'sampling_method'"sampling_method""sampling_method""sampling_method""sampling_method", the used approximation can be selected. Possible values are:

'grid'"grid""grid""grid""grid" (default)

Uses a regular grid for subsampling the filter masks.

'poisson_disk'"poisson_disk""poisson_disk""poisson_disk""poisson_disk"

Uses a Poisson disk sampling. This method is slower than 'grid'"grid""grid""grid""grid", but may produce less artifacts.

'exact'"exact""exact""exact""exact"

Uses all available points. This method is slowest, but the most accurate. If 'exact'"exact""exact""exact""exact" is used, 'sampling_ratio'"sampling_ratio""sampling_ratio""sampling_ratio""sampling_ratio" is ignored.

'sampling_ratio'"sampling_ratio""sampling_ratio""sampling_ratio""sampling_ratio"

Controls how many points are used for the subsampling of the local filter masks.

By setting 'sampling_ratio'"sampling_ratio""sampling_ratio""sampling_ratio""sampling_ratio" to 1.0, the exact method is used. Using a lower sampling ratio leads to faster filtering, but also to slightly less accurate results.

Suggested values: 0.25, 0.5, 0.75, 1.0

Default: 0.50

Rolling Bilateral Filter

bilateral_filterbilateral_filterBilateralFilterBilateralFilterbilateral_filter can be applied iteratively. In this case, the result of one iteration is used as guidance image for the next iteration. This can be useful, e.g., to remove small structures from the original image even if they have a high contrast.

The following example shows the effect of a rolling filter on an artificial image. In this image, the noise level is 10 gray values, the contrast between dark and bright areas is 100 gray values, the left bright bar is 10 pixels wide, the right bar is 40 pixels wide. The yellow line shows a gray-value profile of a horizontal cross section. Used parameters: ImageJointImageJointImageJointimageJointimage_joint constant, SigmaSpatialSigmaSpatialSigmaSpatialsigmaSpatialsigma_spatial = 25, SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range = 15.
* Apply the rolling bilateral filter
* (use a constant guide for the first iteration).
gen_image_proto(Image, ImageJoint, 128)gen_image_proto(Image, ImageJoint, 128)GenImageProto(Image, ImageJoint, 128)GenImageProto(Image, ImageJoint, 128)gen_image_proto(Image, ImageJoint, 128)
for I := 1 to 6 by 1
bilateral_filter(Image, ImageJoint, ImageJoint, 25, 15, [], [])bilateral_filter(Image, ImageJoint, ImageJoint, 25, 15, [], [])BilateralFilter(Image, ImageJoint, ImageJoint, 25, 15, [], [])BilateralFilter(Image, ImageJoint, ImageJoint, 25, 15, [], [])bilateral_filter(Image, ImageJoint, ImageJoint, 25, 15, [], [])
endfor
( 1) ( 2)
(1) Input ImageImageImageimageimage and (2) ImageJointImageJointImageJointimageJointimage_joint for first iteration of the rolling filter.
Result after first iteration: The smaller bar is removed.
Result after third iteration: The edges of the right bar are partly restored.
Result after sixth iteration: The edges of the right bar are restored completely.

Mathematical Background

The calculation of the filtered gray values is done on the basis of the following formula: where is a closeness function is a similarity function is a normalization factor where , and are the gray values of ImageImageImageimageimage and ImageJointImageJointImageJointimageJointimage_joint at the pixel position , and is the neighborhood around the pixel .

For an explanation of the concept of smoothing filters see the introduction of chapter Filters / Smoothing.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Automatically parallelized on tuple level.
  • Automatically parallelized on channel level.
  • Automatically parallelized on domain level.

Parameters

ImageImageImageimageimage (input_object)  (multichannel-)image(-array) objectHImageHObjectHObjectHobject (byte / uint2 / real)

Image to be filtered.

ImageJointImageJointImageJointimageJointimage_joint (input_object)  (multichannel-)image(-array) objectHImageHObjectHObjectHobject (byte / uint2 / real)

Joint image.

ImageBilateralImageBilateralImageBilateralimageBilateralimage_bilateral (output_object)  (multichannel-)image(-array) objectHImageHObjectHObjectHobject * (byte / uint2 / real)

Filtered output image.

SigmaSpatialSigmaSpatialSigmaSpatialsigmaSpatialsigma_spatial (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Size of the Gaussian of the closeness function.

Default: 3.0

Suggested values: 1.0, 2.0, 3.0, 10.0

Restriction: SigmaSpatial > 0.6

SigmaRangeSigmaRangeSigmaRangesigmaRangesigma_range (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Size of the Gaussian of the similarity function.

Default: 20.0

Suggested values: 3.0, 10.0, 20.0, 50.0, 100.0

Restriction: SigmaRange > 0.0001

GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (input_control)  attribute.name(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Generic parameter name.

Default: []

List of values: 'sampling_method'"sampling_method""sampling_method""sampling_method""sampling_method", 'sampling_ratio'"sampling_ratio""sampling_ratio""sampling_ratio""sampling_ratio"

GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (input_control)  attribute.value(-array) HTupleMaybeSequence[Union[int, float, str]]HTupleHtuple (real / integer / string) (double / int / long / string) (double / Hlong / HString) (double / Hlong / char*)

Generic parameter value.

Default: []

Suggested values: 'grid'"grid""grid""grid""grid", 'poisson_disk'"poisson_disk""poisson_disk""poisson_disk""poisson_disk", 'exact'"exact""exact""exact""exact", 0.5, 0.25, 0.75, 1.0

Example (HDevelop)

read_image (Image, 'mreut')
* Edge-preserving smoothing
bilateral_filter (Image, Image, ImageBilateral, 5, 20, [], [])
* Rolling filter (5 iterations)
gen_image_proto (Image, ImageJoint, 0)
for I := 1 to 5 by 1
  bilateral_filter (Image, ImageJoint, ImageJoint, 5, 20, [], [])
endfor

Possible Predecessors

read_imageread_imageReadImageReadImageread_image

Possible Successors

thresholdthresholdThresholdThresholdthreshold, dyn_thresholddyn_thresholdDynThresholdDynThresholddyn_threshold, var_thresholdvar_thresholdVarThresholdVarThresholdvar_threshold, regiongrowingregiongrowingRegiongrowingRegiongrowingregiongrowing

Alternatives

guided_filterguided_filterGuidedFilterGuidedFilterguided_filter, anisotropic_diffusionanisotropic_diffusionAnisotropicDiffusionAnisotropicDiffusionanisotropic_diffusion, median_imagemedian_imageMedianImageMedianImagemedian_image

References

C. Tomasi, R. Manduchi: ”Bilateral filtering for gray and color images”; Sixth International Conference in Computer Vision; S. 839-846; January 1998.
F. Banterle, M. Corsini, P. Cignoni, R. Scopigno: ”A Low-Memory, Straightforward and Fast Bilateral Filter Through Subsampling in Spatial Domain”; Computer Graphics Forum, no. 1, vol 31; S. 19-23; February 2012.
G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, K. Toyama: ”Digital Photography with Flash and No-flash Image Pairs”; ACM Trans., no. 3, vol. 23; S. 9; August 2004.
R. Bridson: ”Fast Poisson Disk Sampling in Arbitrary Dimensions”; ACM SIGGRAPH 2007 Sketches, no. 22; 2007.

Module

Foundation