class_ndim_normclass_ndim_normClassNdimNormClassNdimNormclass_ndim_norm (Operator)
class_ndim_normclass_ndim_normClassNdimNormClassNdimNormclass_ndim_norm
— Classify pixels using hyper-spheres or hyper-cubes.
Signature
Herror class_ndim_norm(const Hobject MultiChannelImage, Hobject* Regions, const char* Metric, const char* SingleMultiple, double Radius, double Center)
Herror T_class_ndim_norm(const Hobject MultiChannelImage, Hobject* Regions, const Htuple Metric, const Htuple SingleMultiple, const Htuple Radius, const Htuple Center)
void ClassNdimNorm(const HObject& MultiChannelImage, HObject* Regions, const HTuple& Metric, const HTuple& SingleMultiple, const HTuple& Radius, const HTuple& Center)
HRegion HImage::ClassNdimNorm(const HString& Metric, const HString& SingleMultiple, const HTuple& Radius, const HTuple& Center) const
HRegion HImage::ClassNdimNorm(const HString& Metric, const HString& SingleMultiple, double Radius, double Center) const
HRegion HImage::ClassNdimNorm(const char* Metric, const char* SingleMultiple, double Radius, double Center) const
HRegion HImage::ClassNdimNorm(const wchar_t* Metric, const wchar_t* SingleMultiple, double Radius, double Center) const
(
Windows only)
static void HOperatorSet.ClassNdimNorm(HObject multiChannelImage, out HObject regions, HTuple metric, HTuple singleMultiple, HTuple radius, HTuple center)
HRegion HImage.ClassNdimNorm(string metric, string singleMultiple, HTuple radius, HTuple center)
HRegion HImage.ClassNdimNorm(string metric, string singleMultiple, double radius, double center)
Description
class_ndim_normclass_ndim_normClassNdimNormClassNdimNormclass_ndim_norm
classifies the pixels of the multi-channel
image given in MultiChannelImageMultiChannelImageMultiChannelImagemultiChannelImagemulti_channel_image
. The result is returned
in RegionsRegionsRegionsregionsregions
as one region per classification object. The
metric used ('euclid'"euclid""euclid""euclid""euclid" or 'maximum'"maximum""maximum""maximum""maximum") is determined by
MetricMetricMetricmetricmetric
. This parameter must be set to the same value used
in learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormlearn_ndim_norm
. The parameter SingleMultipleSingleMultipleSingleMultiplesingleMultiplesingle_multiple
determines whether one region ('single'"single""single""single""single") or multiples regions
('multiple'"multiple""multiple""multiple""multiple") are generated for each cluster.
RadiusRadiusRadiusradiusradius
determines the
radii or half edge length of the clusters, respectively.
CenterCenterCentercentercenter
determines their centers.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Automatically parallelized on tuple level.
Parameters
MultiChannelImageMultiChannelImageMultiChannelImagemultiChannelImagemulti_channel_image
(input_object) (multichannel-)image(-array) →
objectHImageHObjectHObjectHobject (byte)
Multi channel input image.
RegionsRegionsRegionsregionsregions
(output_object) region-array →
objectHRegionHObjectHObjectHobject *
Classification result.
MetricMetricMetricmetricmetric
(input_control) string →
HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Metric to be used.
Default:
'euclid'
"euclid"
"euclid"
"euclid"
"euclid"
List of values:
'euclid'"euclid""euclid""euclid""euclid", 'maximum'"maximum""maximum""maximum""maximum"
SingleMultipleSingleMultipleSingleMultiplesingleMultiplesingle_multiple
(input_control) string →
HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Return one region or one region for each cluster.
Default:
'single'
"single"
"single"
"single"
"single"
List of values:
'multiple'"multiple""multiple""multiple""multiple", 'single'"single""single""single""single"
Example (C++)
#include "HIOStream.h"
#if !defined(USE_IOSTREAM_H)
using namespace std;
#endif
#include "HalconCpp.h"
using namespace Halcon;
int main ()
{
HImage image ("meer"),
t1, t2, t3,
m1, m2, m3, m;
HWindow w;
w.SetColor ("green");
image.Display (w);
cout << "Draw your region of interest " << endl;
HRegion testreg = w.DrawRegion ();
t1 = image.TextureLaws ("el", 2, 5); m1 = t1.MeanImage (21, 21);
t2 = image.TextureLaws ("es", 2, 5); m2 = t2.MeanImage (21, 21);
t3 = image.TextureLaws ("le", 2, 5); m3 = t3.MeanImage (21, 21);
m = m1.Compose3 (m2, m3);
Tuple Metric = "euclid";
Tuple Radius = 20.0;
Tuple MinNum = 5;
Tuple NbrCha = 3;
HRegion empty;
Tuple cen, t;
Radius = testreg.LearnNdimNorm (empty, m, Metric, Radius,
MinNum, NbrCha, &cen, &t);
Tuple RegMod = "multiple";
HRegionArray reg = m.ClassNdimNorm (Metric, RegMod, Radius, cen, NbrCha);
w.SetColored (12);
reg.Display (w);
cout << "Result of classification" << endl;
return (0);
}
Example (C)
read_image(&Image,"meer:);
open_window(0,0,-1,-1,0,"visible","",&WindowHandle);
disp_image(Image,WindowHandle);
fwrite_string("draw region of interest with the mouse");
fnew_line();
set_color(WindowHandle,"green");
draw_region(&Testreg,draw_region);
/* Texture transformation for 3-dimensional charachteristic */
texture_laws(Image,&T1,"el",2,5);
mean_image(T1,&M1,21,21);
texture_laws(Image,&T2,"es",2,5);
mean_image(T2,&M2,21,21);
texture_laws(Image,&T3,"le",2,5);
mean_image(T3,&M3,21,21);
compose3(M1,M2,M3,&M);
/* Cluster for 3-dimensional characteristic area determine training area */
create_tuple(&Metric,1);
set_s(Metric,"euclid",0);
create_tuple(&Radius,1);
set_d(Radius,20.0,0);
create_tuple(&MinNumber,1);
set_i(MinNumber,5,0);
T_learn_ndim_norm(Testobj,EMPTY_REGION,&M,"euclid",Radius,MinNumber,
&Radius,&Center,NULL);
/* Segmentation */
create_tuple(&RegionMode,1);
set_s(RegionMode,"multiple",0);
class_ndim_norm(M,&Regions,Metric,RegionMode,Radius,Center);
set_colored(WindowHandle,12);
disp_region(Regions,WindowHandle);
fwrite_string("Result of classification;");
fwrite_string("Each cluster in another color.");
fnew_line();
Example (C++)
#include "HIOStream.h"
#if !defined(USE_IOSTREAM_H)
using namespace std;
#endif
#include "HalconCpp.h"
using namespace Halcon;
int main ()
{
HImage image ("meer"),
t1, t2, t3,
m1, m2, m3, m;
HWindow w;
w.SetColor ("green");
image.Display (w);
cout << "Draw your region of interest " << endl;
HRegion testreg = w.DrawRegion ();
t1 = image.TextureLaws ("el", 2, 5); m1 = t1.MeanImage (21, 21);
t2 = image.TextureLaws ("es", 2, 5); m2 = t2.MeanImage (21, 21);
t3 = image.TextureLaws ("le", 2, 5); m3 = t3.MeanImage (21, 21);
m = m1.Compose3 (m2, m3);
Tuple Metric = "euclid";
Tuple Radius = 20.0;
Tuple MinNum = 5;
Tuple NbrCha = 3;
HRegion empty;
Tuple cen, t;
Radius = testreg.LearnNdimNorm (empty, m, Metric, Radius,
MinNum, NbrCha, &cen, &t);
Tuple RegMod = "multiple";
HRegionArray reg = m.ClassNdimNorm (Metric, RegMod, Radius, cen, NbrCha);
w.SetColored (12);
reg.Display (w);
cout << "Result of classification" << endl;
return (0);
}
Example (C++)
#include "HIOStream.h"
#if !defined(USE_IOSTREAM_H)
using namespace std;
#endif
#include "HalconCpp.h"
using namespace Halcon;
int main ()
{
HImage image ("meer"),
t1, t2, t3,
m1, m2, m3, m;
HWindow w;
w.SetColor ("green");
image.Display (w);
cout << "Draw your region of interest " << endl;
HRegion testreg = w.DrawRegion ();
t1 = image.TextureLaws ("el", 2, 5); m1 = t1.MeanImage (21, 21);
t2 = image.TextureLaws ("es", 2, 5); m2 = t2.MeanImage (21, 21);
t3 = image.TextureLaws ("le", 2, 5); m3 = t3.MeanImage (21, 21);
m = m1.Compose3 (m2, m3);
Tuple Metric = "euclid";
Tuple Radius = 20.0;
Tuple MinNum = 5;
Tuple NbrCha = 3;
HRegion empty;
Tuple cen, t;
Radius = testreg.LearnNdimNorm (empty, m, Metric, Radius,
MinNum, NbrCha, &cen, &t);
Tuple RegMod = "multiple";
HRegionArray reg = m.ClassNdimNorm (Metric, RegMod, Radius, cen, NbrCha);
w.SetColored (12);
reg.Display (w);
cout << "Result of classification" << endl;
return (0);
}
Complexity
Let N be the number of clusters and A be the area of the input
region. Then the runtime complexity is O(N,A).
Result
class_ndim_normclass_ndim_normClassNdimNormClassNdimNormclass_ndim_norm
returns 2 (
H_MSG_TRUE)
if all parameters are
correct. The behavior with respect to the input images and output
regions can be determined by setting the values of the flags
'no_object_result'"no_object_result""no_object_result""no_object_result""no_object_result", 'empty_region_result'"empty_region_result""empty_region_result""empty_region_result""empty_region_result", and
'store_empty_region'"store_empty_region""store_empty_region""store_empty_region""store_empty_region" with set_systemset_systemSetSystemSetSystemset_system
.
If necessary, an exception is raised.
Possible Predecessors
learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormlearn_ndim_norm
,
compose2compose2Compose2Compose2compose2
,
compose3compose3Compose3Compose3compose3
,
compose4compose4Compose4Compose4compose4
,
compose5compose5Compose5Compose5compose5
,
compose6compose6Compose6Compose6compose6
,
compose7compose7Compose7Compose7compose7
Possible Successors
connectionconnectionConnectionConnectionconnection
,
select_shapeselect_shapeSelectShapeSelectShapeselect_shape
,
reduce_domainreduce_domainReduceDomainReduceDomainreduce_domain
,
select_grayselect_graySelectGraySelectGrayselect_gray
Alternatives
class_2dim_supclass_2dim_supClass2dimSupClass2dimSupclass_2dim_sup
,
class_2dim_unsupclass_2dim_unsupClass2dimUnsupClass2dimUnsupclass_2dim_unsup
Module
Foundation