Operator Reference
create_dl_layer_identity (Operator)
create_dl_layer_identity
— Create an identity layer.
Signature
create_dl_layer_identity( : : DLLayerInput, LayerName, GenParamName, GenParamValue : DLLayerIdentity)
Description
The operator create_dl_layer_identity
creates an identity layer
whose handle is returned in DLLayerIdentity
.
The parameter DLLayerInput
determines the feeding input layer and
expects the layer handle as value.
The parameter LayerName
sets an individual layer name.
Note that if creating a model using create_dl_model
each layer of
the created network must have a unique name.
The following generic parameters GenParamName
and the corresponding
values GenParamValue
are supported:
- 'is_inference_output' :
-
Determines whether
apply_dl_model
will include the output of this layer in the dictionaryDLResultBatch
even without specifying this layer inOutputs
('true' ) or not ('false' ).Default: 'false'
Certain parameters of layers created using this operator
create_dl_layer_identity
can be set and retrieved using
further operators.
The following tables give an overview, which parameters can be set
using set_dl_model_layer_param
and which ones can be retrieved
using get_dl_model_layer_param
or get_dl_layer_param
. Note, the
operators set_dl_model_layer_param
and get_dl_model_layer_param
require a model created by create_dl_model
.
Layer Parameters | set |
get |
---|---|---|
'input_layer' (DLLayerInput ) |
x
|
|
'name' (LayerName ) |
x |
x
|
'output_layer' (DLLayerIdentity ) |
x
|
|
'shape' | x
|
|
'type' | x
|
Generic Layer Parameters | set |
get |
---|---|---|
'is_inference_output' | x |
x
|
'num_trainable_params' | x
|
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
DLLayerInput
(input_control) dl_layer →
(handle)
Feeding layer.
LayerName
(input_control) string →
(string)
Name of the output layer.
GenParamName
(input_control) attribute.name(-array) →
(string)
Generic input parameter names.
Default: []
List of values: 'is_inference_output'
GenParamValue
(input_control) attribute.value(-array) →
(string / integer / real)
Generic input parameter values.
Default: []
Suggested values: 'true' , 'false'
DLLayerIdentity
(output_control) dl_layer →
(handle)
Identity layer.
Example (HDevelop)
* Create a model that concatinates the output of a convolution layer. create_dl_layer_input ('input', [10,10,3], [], [], DLLayerInput) create_dl_layer_convolution (DLLayerInput, 'conv', 3, 1, 1, 8, 1, 'none', \ 'none', [], [], DLLayerConvolution) * Using the same layer multiple times as input does not work, so make a copy. create_dl_layer_identity (DLLayerConvolution, 'conv_copy', [], [], \ DLLayerIdentity) create_dl_layer_concat ([DLLayerConvolution, DLLayerIdentity], 'concat', \ 'depth', [], [], DLLayerConcat) create_dl_model (DLLayerConcat, DLModelHandle)
Possible Successors
create_dl_layer_elementwise
,
create_dl_layer_concat
Module
Deep Learning Professional