Operator Reference

create_dl_layer_loss_focalT_create_dl_layer_loss_focalCreateDlLayerLossFocalCreateDlLayerLossFocalcreate_dl_layer_loss_focal (Operator)

create_dl_layer_loss_focalT_create_dl_layer_loss_focalCreateDlLayerLossFocalCreateDlLayerLossFocalcreate_dl_layer_loss_focal — Create a focal loss layer.

Signature

Herror T_create_dl_layer_loss_focal(const Htuple DLLayerInput, const Htuple DLLayerTarget, const Htuple DLLayerWeights, const Htuple DLLayerNormalization, const Htuple LayerName, const Htuple LossWeight, const Htuple Gamma, const Htuple ClassWeights, const Htuple Type, const Htuple GenParamName, const Htuple GenParamValue, Htuple* DLLayerLossFocal)

void CreateDlLayerLossFocal(const HTuple& DLLayerInput, const HTuple& DLLayerTarget, const HTuple& DLLayerWeights, const HTuple& DLLayerNormalization, const HTuple& LayerName, const HTuple& LossWeight, const HTuple& Gamma, const HTuple& ClassWeights, const HTuple& Type, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* DLLayerLossFocal)

HDlLayer HDlLayer::CreateDlLayerLossFocal(const HDlLayer& DLLayerTarget, const HDlLayer& DLLayerWeights, const HDlLayer& DLLayerNormalization, const HString& LayerName, const HTuple& LossWeight, const HTuple& Gamma, const HTuple& ClassWeights, const HString& Type, const HTuple& GenParamName, const HTuple& GenParamValue) const

HDlLayer HDlLayer::CreateDlLayerLossFocal(const HDlLayer& DLLayerTarget, const HDlLayer& DLLayerWeights, const HDlLayer& DLLayerNormalization, const HString& LayerName, double LossWeight, double Gamma, double ClassWeights, const HString& Type, const HString& GenParamName, const HString& GenParamValue) const

HDlLayer HDlLayer::CreateDlLayerLossFocal(const HDlLayer& DLLayerTarget, const HDlLayer& DLLayerWeights, const HDlLayer& DLLayerNormalization, const char* LayerName, double LossWeight, double Gamma, double ClassWeights, const char* Type, const char* GenParamName, const char* GenParamValue) const

HDlLayer HDlLayer::CreateDlLayerLossFocal(const HDlLayer& DLLayerTarget, const HDlLayer& DLLayerWeights, const HDlLayer& DLLayerNormalization, const wchar_t* LayerName, double LossWeight, double Gamma, double ClassWeights, const wchar_t* Type, const wchar_t* GenParamName, const wchar_t* GenParamValue) const   ( Windows only)

static void HOperatorSet.CreateDlLayerLossFocal(HTuple DLLayerInput, HTuple DLLayerTarget, HTuple DLLayerWeights, HTuple DLLayerNormalization, HTuple layerName, HTuple lossWeight, HTuple gamma, HTuple classWeights, HTuple type, HTuple genParamName, HTuple genParamValue, out HTuple DLLayerLossFocal)

HDlLayer HDlLayer.CreateDlLayerLossFocal(HDlLayer DLLayerTarget, HDlLayer DLLayerWeights, HDlLayer DLLayerNormalization, string layerName, HTuple lossWeight, HTuple gamma, HTuple classWeights, string type, HTuple genParamName, HTuple genParamValue)

HDlLayer HDlLayer.CreateDlLayerLossFocal(HDlLayer DLLayerTarget, HDlLayer DLLayerWeights, HDlLayer DLLayerNormalization, string layerName, double lossWeight, double gamma, double classWeights, string type, string genParamName, string genParamValue)

def create_dl_layer_loss_focal(dllayer_input: HHandle, dllayer_target: HHandle, dllayer_weights: HHandle, dllayer_normalization: HHandle, layer_name: str, loss_weight: Union[int, float], gamma: Union[int, float], class_weights: MaybeSequence[Union[int, float]], type: str, gen_param_name: MaybeSequence[str], gen_param_value: MaybeSequence[str]) -> HHandle

Description

The operator create_dl_layer_loss_focalcreate_dl_layer_loss_focalCreateDlLayerLossFocalCreateDlLayerLossFocalcreate_dl_layer_loss_focal creates a focal loss layer whose handle is returned in DLLayerLossFocalDLLayerLossFocalDLLayerLossFocalDLLayerLossFocaldllayer_loss_focal. See the reference cited below for further information about its definition and parameter meanings.

This layer expects multiple layers as input:

The parameter LayerNameLayerNameLayerNamelayerNamelayer_name sets an individual layer name. Note that if creating a model using create_dl_modelcreate_dl_modelCreateDlModelCreateDlModelcreate_dl_model each layer of the created network must have a unique name.

The parameter LossWeightLossWeightLossWeightlossWeightloss_weight is a overall loss weight if there are multiple losses in the network.

The parameter GammaGammaGammagammagamma is the exponent of the focal factor.

The parameter ClassWeightsClassWeightsClassWeightsclassWeightsclass_weights defines class specific weights. All loss contributions of foreground samples of a class are weighted with the given factor. The background samples are weighted by 1 - ClassWeightsClassWeightsClassWeightsclassWeightsclass_weights. Typically, this is set to 1.0/(Number of samples of the class). Note, the length of this array has to be either 1, then its broadcasted to the number of classes, or it has to correspond to the number of classes. The default value [] corresponds to a factor of 0.5 for all classes. Note, if the number of classes are changed on a network then the number of class specific weights are also adapted and reset with the default value 0.5 for each class.

The parameter TypeTypeTypetypetype sets the focal loss options:

'focal_binary'"focal_binary""focal_binary""focal_binary""focal_binary":

Focal loss.

'sigmoid_focal_binary'"sigmoid_focal_binary""sigmoid_focal_binary""sigmoid_focal_binary""sigmoid_focal_binary":

Focal loss fused with sigmoid.

The following generic parameters GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and the corresponding values GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value are supported:

'is_inference_output'"is_inference_output""is_inference_output""is_inference_output""is_inference_output":

Determines whether apply_dl_modelapply_dl_modelApplyDlModelApplyDlModelapply_dl_model will include the output of this layer in the dictionary DLResultBatchDLResultBatchDLResultBatchDLResultBatchdlresult_batch even without specifying this layer in OutputsOutputsOutputsoutputsoutputs ('true'"true""true""true""true") or not ('false'"false""false""false""false").

Default: 'false'"false""false""false""false"

Certain parameters of layers created using this operator create_dl_layer_loss_focalcreate_dl_layer_loss_focalCreateDlLayerLossFocalCreateDlLayerLossFocalcreate_dl_layer_loss_focal can be set and retrieved using further operators. The following tables give an overview, which parameters can be set using set_dl_model_layer_paramset_dl_model_layer_paramSetDlModelLayerParamSetDlModelLayerParamset_dl_model_layer_param and which ones can be retrieved using get_dl_model_layer_paramget_dl_model_layer_paramGetDlModelLayerParamGetDlModelLayerParamget_dl_model_layer_param or get_dl_layer_paramget_dl_layer_paramGetDlLayerParamGetDlLayerParamget_dl_layer_param. Note, the operators set_dl_model_layer_paramset_dl_model_layer_paramSetDlModelLayerParamSetDlModelLayerParamset_dl_model_layer_param and get_dl_model_layer_paramget_dl_model_layer_paramGetDlModelLayerParamGetDlModelLayerParamget_dl_model_layer_param require a model created by create_dl_modelcreate_dl_modelCreateDlModelCreateDlModelcreate_dl_model.

Layer Parameters set get
'focal_type'"focal_type""focal_type""focal_type""focal_type" (TypeTypeTypetypetype) x
'gamma'"gamma""gamma""gamma""gamma" (GammaGammaGammagammagamma) x x
'input_layer'"input_layer""input_layer""input_layer""input_layer" (DLLayerInputDLLayerInputDLLayerInputDLLayerInputdllayer_input, DLLayerTargetDLLayerTargetDLLayerTargetDLLayerTargetdllayer_target, DLLayerWeightsDLLayerWeightsDLLayerWeightsDLLayerWeightsdllayer_weights, and/or DLLayerNormalizationDLLayerNormalizationDLLayerNormalizationDLLayerNormalizationdllayer_normalization) x
'loss_weight'"loss_weight""loss_weight""loss_weight""loss_weight" (LossWeightLossWeightLossWeightlossWeightloss_weight) x x
'name'"name""name""name""name" (LayerNameLayerNameLayerNamelayerNamelayer_name) x x
'output_layer'"output_layer""output_layer""output_layer""output_layer" (DLLayerLossFocalDLLayerLossFocalDLLayerLossFocalDLLayerLossFocaldllayer_loss_focal) x
'shape'"shape""shape""shape""shape" x
'type'"type""type""type""type" x
Generic Layer Parameters set get
'is_inference_output'"is_inference_output""is_inference_output""is_inference_output""is_inference_output" x x
'num_trainable_params'"num_trainable_params""num_trainable_params""num_trainable_params""num_trainable_params" x

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Processed without parallelization.

Parameters

DLLayerInputDLLayerInputDLLayerInputDLLayerInputdllayer_input (input_control)  dl_layer HDlLayer, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Input layer.

DLLayerTargetDLLayerTargetDLLayerTargetDLLayerTargetdllayer_target (input_control)  dl_layer HDlLayer, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Target layer.

DLLayerWeightsDLLayerWeightsDLLayerWeightsDLLayerWeightsdllayer_weights (input_control)  dl_layer HDlLayer, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Weights layer.

DLLayerNormalizationDLLayerNormalizationDLLayerNormalizationDLLayerNormalizationdllayer_normalization (input_control)  dl_layer HDlLayer, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Normalization layer.

Default: []

LayerNameLayerNameLayerNamelayerNamelayer_name (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Name of the output layer.

LossWeightLossWeightLossWeightlossWeightloss_weight (input_control)  number HTupleUnion[int, float]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Overall loss weight if there are multiple losses in the network.

Default: 1.0

GammaGammaGammagammagamma (input_control)  number HTupleUnion[int, float]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Exponent of the focal factor.

Default: 2.0

ClassWeightsClassWeightsClassWeightsclassWeightsclass_weights (input_control)  number(-array) HTupleMaybeSequence[Union[int, float]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Class specific weight.

Default: []

TypeTypeTypetypetype (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Focal loss type.

Default: 'focal_binary' "focal_binary" "focal_binary" "focal_binary" "focal_binary"

List of values: 'focal_binary'"focal_binary""focal_binary""focal_binary""focal_binary", 'sigmoid_focal_binary'"sigmoid_focal_binary""sigmoid_focal_binary""sigmoid_focal_binary""sigmoid_focal_binary"

GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (input_control)  attribute.name(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Generic input parameter names.

Default: []

List of values: 'is_inference_output'"is_inference_output""is_inference_output""is_inference_output""is_inference_output"

GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (input_control)  attribute.value(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Generic input parameter values.

Default: []

Suggested values: 'true'"true""true""true""true", 'false'"false""false""false""false"

DLLayerLossFocalDLLayerLossFocalDLLayerLossFocalDLLayerLossFocaldllayer_loss_focal (output_control)  dl_layer HDlLayer, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Focal loss layer.

References

T. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, "Focal Loss for Dense Object Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318-327, 1 Feb. 2020, doi: 10.1109/TPAMI.2018.2858826.

Module

Deep Learning Professional