Operator Reference
create_dl_layer_permutation (Operator)
create_dl_layer_permutation
— Create a permutation layer.
Signature
create_dl_layer_permutation( : : DLLayerInput, LayerName, Permutation, GenParamName, GenParamValue : DLLayerPermutation)
Description
The operator create_dl_layer_permutation
creates a permutation layer
whose handle is returned in DLLayerPermutation
.
The parameter DLLayerInput
determines the feeding input layer
and expects the layer handle as value.
The parameter LayerName
sets an individual layer name.
Note that if creating a model using create_dl_model
each layer of
the created network must have a unique name.
The parameter Permutation
determines the new order of the axes of
DLLayerInput
, to which the input axes should be permuted.
Permutation
has the form
[index width
, index height
, index depth
,
index batch
], where the indices are corresponding to the dimensions
of the input. For example, [0, 1, 3, 2] leads to swapping the depth
and the batch axes. Therefore, each index must be unique and be taken from
the set .
Using a CPU device, for some values of Permutation
the internal code
can not be optimized which can lead to an increased runtime. In this case,
the layer parameter 'fall_back_to_baseline' is set to
'true' .
The following generic parameters GenParamName
and the corresponding
values GenParamValue
are supported:
- 'is_inference_output' :
-
Determines whether
apply_dl_model
will include the output of this layer in the dictionaryDLResultBatch
even without specifying this layer inOutputs
('true' ) or not ('false' ).Default: 'false'
Certain parameters of layers created using this operator
create_dl_layer_permutation
can be set and retrieved using
further operators.
The following tables give an overview, which parameters can be set
using set_dl_model_layer_param
and which ones can be retrieved
using get_dl_model_layer_param
or get_dl_layer_param
. Note,
the operators set_dl_model_layer_param
and
get_dl_model_layer_param
require a model created by
create_dl_model
.
Layer Parameters | set |
get |
---|---|---|
'fall_back_to_baseline' | x
|
|
'input_layer' (DLLayerInput ) |
x
|
|
'name' (LayerName ) |
x |
x
|
'permutation' (Permutation ) |
x
|
|
'shape' | x
|
|
'type' | x
|
Generic Layer Parameters | set |
get |
---|---|---|
'is_inference_output' | x |
x
|
'num_trainable_params' | x
|
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
DLLayerInput
(input_control) dl_layer →
(handle)
Feeding layer.
LayerName
(input_control) string →
(string)
Name of the output layer.
Permutation
(input_control) number-array →
(integer)
Order of the permuted axes.
Default: [0,1,2,3]
GenParamName
(input_control) attribute.name(-array) →
(string)
Generic input parameter names.
Default: []
List of values: 'is_inference_output'
GenParamValue
(input_control) attribute.value(-array) →
(string / integer / real)
Generic input parameter values.
Default: []
Suggested values: 'true' , 'false'
DLLayerPermutation
(output_control) dl_layer →
(handle)
Permutation layer.
Example (HDevelop)
* Swap the batch and depth axes with a permutation layer. create_dl_layer_input ('input_a', [1, 1, 4], ['input_type', 'const_val'], \ ['constant', 1.0], DLLayerInputA) create_dl_layer_input ('input_b', [1, 1, 4], ['input_type', 'const_val'], \ ['constant', 2.0], DLLayerInputB) create_dl_layer_concat ([DLLayerInputA, DLLayerInputB], 'concat', 'batch', \ [], [], DLLayerConcat) create_dl_layer_permutation (DLLayerConcat, 'permute', [0,1,3,2], \ [], [], DLLayerPermute) create_dl_layer_depth_max (DLLayerPermute, 'depth_max', 'value', \ [], [], _, DLLayerDepthMaxValue) create_dl_model (DLLayerDepthMaxValue, DLModel) * The expected output values in DLResultBatch.depth_max are [2.0,2.0,2.0,2.0] query_available_dl_devices (['runtime'], ['cpu'], DLDeviceHandles) set_dl_model_param (DLModel, 'device', DLDeviceHandles[0]) apply_dl_model (DLModel, dict{}, [], DLResultBatch)
Possible Predecessors
create_dl_layer_input
,
create_dl_layer_concat
,
create_dl_layer_reshape
Possible Successors
create_dl_layer_convolution
,
create_dl_layer_dense
,
create_dl_layer_reshape
See also
Module
Deep Learning Professional