create_ocr_class_mlpT_create_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp (Operator)
create_ocr_class_mlpT_create_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp
— Create an OCR classifier using a multilayer perceptron.
Signature
void CreateOcrClassMlp(const HTuple& WidthCharacter, const HTuple& HeightCharacter, const HTuple& Interpolation, const HTuple& Features, const HTuple& Characters, const HTuple& NumHidden, const HTuple& Preprocessing, const HTuple& NumComponents, const HTuple& RandSeed, HTuple* OCRHandle)
void HOCRMlp::HOCRMlp(Hlong WidthCharacter, Hlong HeightCharacter, const HString& Interpolation, const HTuple& Features, const HTuple& Characters, Hlong NumHidden, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)
void HOCRMlp::HOCRMlp(Hlong WidthCharacter, Hlong HeightCharacter, const HString& Interpolation, const HString& Features, const HTuple& Characters, Hlong NumHidden, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)
void HOCRMlp::HOCRMlp(Hlong WidthCharacter, Hlong HeightCharacter, const char* Interpolation, const char* Features, const HTuple& Characters, Hlong NumHidden, const char* Preprocessing, Hlong NumComponents, Hlong RandSeed)
void HOCRMlp::HOCRMlp(Hlong WidthCharacter, Hlong HeightCharacter, const wchar_t* Interpolation, const wchar_t* Features, const HTuple& Characters, Hlong NumHidden, const wchar_t* Preprocessing, Hlong NumComponents, Hlong RandSeed)
(
Windows only)
void HOCRMlp::CreateOcrClassMlp(Hlong WidthCharacter, Hlong HeightCharacter, const HString& Interpolation, const HTuple& Features, const HTuple& Characters, Hlong NumHidden, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)
void HOCRMlp::CreateOcrClassMlp(Hlong WidthCharacter, Hlong HeightCharacter, const HString& Interpolation, const HString& Features, const HTuple& Characters, Hlong NumHidden, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)
void HOCRMlp::CreateOcrClassMlp(Hlong WidthCharacter, Hlong HeightCharacter, const char* Interpolation, const char* Features, const HTuple& Characters, Hlong NumHidden, const char* Preprocessing, Hlong NumComponents, Hlong RandSeed)
void HOCRMlp::CreateOcrClassMlp(Hlong WidthCharacter, Hlong HeightCharacter, const wchar_t* Interpolation, const wchar_t* Features, const HTuple& Characters, Hlong NumHidden, const wchar_t* Preprocessing, Hlong NumComponents, Hlong RandSeed)
(
Windows only)
static void HOperatorSet.CreateOcrClassMlp(HTuple widthCharacter, HTuple heightCharacter, HTuple interpolation, HTuple features, HTuple characters, HTuple numHidden, HTuple preprocessing, HTuple numComponents, HTuple randSeed, out HTuple OCRHandle)
public HOCRMlp(int widthCharacter, int heightCharacter, string interpolation, HTuple features, HTuple characters, int numHidden, string preprocessing, int numComponents, int randSeed)
public HOCRMlp(int widthCharacter, int heightCharacter, string interpolation, string features, HTuple characters, int numHidden, string preprocessing, int numComponents, int randSeed)
void HOCRMlp.CreateOcrClassMlp(int widthCharacter, int heightCharacter, string interpolation, HTuple features, HTuple characters, int numHidden, string preprocessing, int numComponents, int randSeed)
void HOCRMlp.CreateOcrClassMlp(int widthCharacter, int heightCharacter, string interpolation, string features, HTuple characters, int numHidden, string preprocessing, int numComponents, int randSeed)
Description
create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp
creates an OCR classifier that uses a
multilayer perceptron (MLP). The handle of the OCR classifier is
returned in OCRHandleOCRHandleOCRHandleOCRHandleocrhandle
.
For a description on how an MLP works, see create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
.
create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp
creates an MLP with
OutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function
= 'softmax'"softmax""softmax""softmax""softmax". The length of the
feature vector of the MLP (NumInputNumInputNumInputnumInputnum_input
in
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
) is determined from the features that are
used for the OCR, which are passed in FeaturesFeaturesFeaturesfeaturesfeatures
. The
features are described below. The number of units in the hidden
layer is determined by NumHiddenNumHiddenNumHiddennumHiddennum_hidden
. The number of output
variables of the MLP (NumOutputNumOutputNumOutputnumOutputnum_output
in
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
) is determined from the names of the
characters to be used in the OCR, which are passed in
CharactersCharactersCharacterscharacterscharacters
. As described with create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
,
the parameters PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
and NumComponentsNumComponentsNumComponentsnumComponentsnum_components
can
be used to specify a preprocessing of the data (i.e., the feature
vectors). The OCR already approximately normalizes the features.
Hence, PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
can typically be set to
'none'"none""none""none""none". The parameter RandSeedRandSeedRandSeedrandSeedrand_seed
has the same
meaning as in create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
. Furthermore, like for
general MLP classifiers (see create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
and
set_regularization_params_class_mlpset_regularization_params_class_mlpSetRegularizationParamsClassMlpSetRegularizationParamsClassMlpset_regularization_params_class_mlp
), it may be desirable to
regularize OCR classifiers. This can be achieved by calling
set_regularization_params_ocr_class_mlpset_regularization_params_ocr_class_mlpSetRegularizationParamsOcrClassMlpSetRegularizationParamsOcrClassMlpset_regularization_params_ocr_class_mlp
before training the
OCR classifier. In addition, like for general MLP classifiers (see
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
and
set_rejection_params_class_mlpset_rejection_params_class_mlpSetRejectionParamsClassMlpSetRejectionParamsClassMlpset_rejection_params_class_mlp
), it might be desirable to
equip the OCR classifiers with the capability to reject unknown
characters. The rejection class is by convention an additional
symbol chr(26) that must be provided in CharactersCharactersCharacterscharacterscharacters
. The
parameters of the rejection class can be set by calling
set_rejection_params_ocr_class_mlpset_rejection_params_ocr_class_mlpSetRejectionParamsOcrClassMlpSetRejectionParamsOcrClassMlpset_rejection_params_ocr_class_mlp
before training the OCR
classifier.
The features to be used for the classification are determined by
FeaturesFeaturesFeaturesfeaturesfeatures
. FeaturesFeaturesFeaturesfeaturesfeatures
can contain a tuple of several
feature names. Each of these feature names results in one or more
features to be calculated for the classifier. Some of the feature
names compute gray value features (e.g., 'pixel_invar'"pixel_invar""pixel_invar""pixel_invar""pixel_invar").
Because a classifier requires a constant number of features (input
variables), a character to be classified is transformed to a
standard size, which is determined by WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
and
HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
. The interpolation to be used for the
transformation is determined by InterpolationInterpolationInterpolationinterpolationinterpolation
. It has the
same meaning as in affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageaffine_trans_image
. The interpolation
should be chosen such that no aliasing effects occur in the
transformation. For most applications, InterpolationInterpolationInterpolationinterpolationinterpolation
=
'constant'"constant""constant""constant""constant" should be used. It should be noted that the
size of the transformed character is not chosen too large, because
the generalization properties of the classifier may become bad for
large sizes. In particular, large sizes will lead to the fact that
small segmentation errors will have a large influence on the
computed features if gray value features are used. This happens
because segmentation errors will change the smallest enclosing
rectangle of the regions, which leads to the fact that the character
is zoomed differently than the characters in the training set. In
most applications, sizes between 6x8 and
10x14 should be used.
The parameter FeaturesFeaturesFeaturesfeaturesfeatures
can contain the following feature
names for the classification of the characters.
- 'default'"default""default""default""default"
-
'ratio'"ratio""ratio""ratio""ratio" and 'pixel_invar'"pixel_invar""pixel_invar""pixel_invar""pixel_invar" are selected.
- 'pixel'"pixel""pixel""pixel""pixel"
-
Gray values of the character (WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
x
HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
features).
- 'pixel_invar'"pixel_invar""pixel_invar""pixel_invar""pixel_invar"
-
Gray values of the character with maximum scaling of the gray
values (WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
x HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
features).
- 'pixel_binary'"pixel_binary""pixel_binary""pixel_binary""pixel_binary"
-
Region of the character as a binary image zoomed to a size of
WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
x HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
(WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
x HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
features).
- 'gradient_8dir'"gradient_8dir""gradient_8dir""gradient_8dir""gradient_8dir"
-
Gradients are computed on the character image. The gradient
directions are discretized into 8 directions. The amplitude image
is decomposed into 8 channels according to these discretized
directions. 25 samples on a 5x5 grid are extracted from
each channel. These samples are used as features (200 features).
- 'projection_horizontal'"projection_horizontal""projection_horizontal""projection_horizontal""projection_horizontal"
-
Horizontal projection of the gray values (see
gray_projectionsgray_projectionsGrayProjectionsGrayProjectionsgray_projections
, HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
features).
- 'projection_horizontal_invar'"projection_horizontal_invar""projection_horizontal_invar""projection_horizontal_invar""projection_horizontal_invar"
-
Maximally scaled horizontal projection of the gray values
(HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
features).
- 'projection_vertical'"projection_vertical""projection_vertical""projection_vertical""projection_vertical"
-
Vertical projection of the gray values (see
gray_projectionsgray_projectionsGrayProjectionsGrayProjectionsgray_projections
, WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
features).
- 'projection_vertical_invar'"projection_vertical_invar""projection_vertical_invar""projection_vertical_invar""projection_vertical_invar"
-
Maximally scaled vertical projection of the gray values
(WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
features).
- 'ratio'"ratio""ratio""ratio""ratio"
-
Aspect ratio of the character (see
height_width_ratioheight_width_ratioHeightWidthRatioHeightWidthRatioheight_width_ratio
, 1 feature).
- 'anisometry'"anisometry""anisometry""anisometry""anisometry"
-
Anisometry of the character (see eccentricityeccentricityEccentricityEccentricityeccentricity
, 1 feature).
- 'width'"width""width""width""width"
-
Width of the character before scaling the character to the standard
size (not scale-invariant, see
height_width_ratioheight_width_ratioHeightWidthRatioHeightWidthRatioheight_width_ratio
, 1 feature).
- 'height'"height""height""height""height"
-
Height of the character before scaling the character to the
standard size (not scale-invariant, see
height_width_ratioheight_width_ratioHeightWidthRatioHeightWidthRatioheight_width_ratio
, 1 feature).
- 'zoom_factor'"zoom_factor""zoom_factor""zoom_factor""zoom_factor"
-
Difference in size between the character and the values of
WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
and HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
(not
scale-invariant, 1 feature).
- 'foreground'"foreground""foreground""foreground""foreground"
-
Fraction of pixels in the foreground (1 feature).
- 'foreground_grid_9'"foreground_grid_9""foreground_grid_9""foreground_grid_9""foreground_grid_9"
-
Fraction of pixels in the foreground in a 3x3 grid within
the smallest enclosing rectangle of the character (9 features).
- 'foreground_grid_16'"foreground_grid_16""foreground_grid_16""foreground_grid_16""foreground_grid_16"
-
Fraction of pixels in the foreground in a 4x4 grid within
the smallest enclosing rectangle of the character (16 features).
- 'compactness'"compactness""compactness""compactness""compactness"
-
Compactness of the character (see compactnesscompactnessCompactnessCompactnesscompactness
, 1 feature).
- 'convexity'"convexity""convexity""convexity""convexity"
-
Convexity of the character (see convexityconvexityConvexityConvexityconvexity
, 1 feature).
- 'moments_region_2nd_invar'"moments_region_2nd_invar""moments_region_2nd_invar""moments_region_2nd_invar""moments_region_2nd_invar"
-
Normalized 2nd moments of the character (see
moments_region_2nd_invarmoments_region_2nd_invarMomentsRegion2ndInvarMomentsRegion2ndInvarmoments_region_2nd_invar
, 3 features).
- 'moments_region_2nd_rel_invar'"moments_region_2nd_rel_invar""moments_region_2nd_rel_invar""moments_region_2nd_rel_invar""moments_region_2nd_rel_invar"
-
Normalized 2nd relative moments of the character (see
moments_region_2nd_rel_invarmoments_region_2nd_rel_invarMomentsRegion2ndRelInvarMomentsRegion2ndRelInvarmoments_region_2nd_rel_invar
, 2 features).
- 'moments_region_3rd_invar'"moments_region_3rd_invar""moments_region_3rd_invar""moments_region_3rd_invar""moments_region_3rd_invar"
-
Normalized 3rd moments of the character (see
moments_region_3rd_invarmoments_region_3rd_invarMomentsRegion3rdInvarMomentsRegion3rdInvarmoments_region_3rd_invar
, 4 features).
- 'moments_central'"moments_central""moments_central""moments_central""moments_central"
-
Normalized central moments of the character (see
moments_region_centralmoments_region_centralMomentsRegionCentralMomentsRegionCentralmoments_region_central
, 4 features).
- 'moments_gray_plane'"moments_gray_plane""moments_gray_plane""moments_gray_plane""moments_gray_plane"
-
Normalized gray value moments and the angle of the gray value
plane (see moments_gray_planemoments_gray_planeMomentsGrayPlaneMomentsGrayPlanemoments_gray_plane
, 4 features).
- 'phi'"phi""phi""phi""phi"
-
Sinus and cosinus of the orientation (angle) of the character
(see elliptic_axiselliptic_axisEllipticAxisEllipticAxiselliptic_axis
, 2 feature).
- 'num_connect'"num_connect""num_connect""num_connect""num_connect"
-
Number of connected components (see connect_and_holesconnect_and_holesConnectAndHolesConnectAndHolesconnect_and_holes
, 1
feature).
- 'num_holes'"num_holes""num_holes""num_holes""num_holes"
-
Number of holes (see connect_and_holesconnect_and_holesConnectAndHolesConnectAndHolesconnect_and_holes
, 1 feature).
- 'cooc'"cooc""cooc""cooc""cooc"
-
Values of the binary cooccurrence matrix (see
gen_cooc_matrixgen_cooc_matrixGenCoocMatrixGenCoocMatrixgen_cooc_matrix
, 8 features).
- 'num_runs'"num_runs""num_runs""num_runs""num_runs"
-
Number of runs in the region normalized by the height (1 feature).
- 'chord_histo'"chord_histo""chord_histo""chord_histo""chord_histo"
-
Frequency of the runs per row (not scale-invariant,
HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
features).
After the classifier has been created, it is trained using
trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp
. After this, the classifier can be
saved using write_ocr_class_mlpwrite_ocr_class_mlpWriteOcrClassMlpWriteOcrClassMlpwrite_ocr_class_mlp
. Alternatively, the
classifier can be used immediately after training to classify
characters using do_ocr_single_class_mlpdo_ocr_single_class_mlpDoOcrSingleClassMlpDoOcrSingleClassMlpdo_ocr_single_class_mlp
or
do_ocr_multi_class_mlpdo_ocr_multi_class_mlpDoOcrMultiClassMlpDoOcrMultiClassMlpdo_ocr_multi_class_mlp
.
HALCON provides a number of pretrained OCR classifiers (see the
“Solution Guide I”
, chapter 'OCR', section 'Pretrained OCR
Fonts'). These
pretrained OCR classifiers can be read directly with
read_ocr_class_mlpread_ocr_class_mlpReadOcrClassMlpReadOcrClassMlpread_ocr_class_mlp
and make it possible to read a wide
variety of different fonts without the need to train an OCR
classifier. Therefore, it is recommended to try if one of the
pretrained OCR classifiers can be used successfully. If this is the
case, it is not necessary to create and train an OCR classifier.
A comparison of the MLP and the support vector machine (SVM) (see
create_ocr_class_svmcreate_ocr_class_svmCreateOcrClassSvmCreateOcrClassSvmcreate_ocr_class_svm
) typically shows that SVMs are
generally faster at training, especially for huge training sets, and
achieve slightly better recognition rates than MLPs. The MLP is
faster at classification and should therefore be preferred in time
critical applications. Please note that this guideline assumes
optimal tuning of the parameters.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even though the handle is used as an input parameter by those operators.
Parameters
WidthCharacterWidthCharacterWidthCharacterwidthCharacterwidth_character
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Width of the rectangle to which the gray values
of the segmented character are zoomed.
Default:
8
Suggested values:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20
Value range:
4
≤
WidthCharacter
WidthCharacter
WidthCharacter
widthCharacter
width_character
≤
20
HeightCharacterHeightCharacterHeightCharacterheightCharacterheight_character
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Height of the rectangle to which the gray values
of the segmented character are zoomed.
Default:
10
Suggested values:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20
Value range:
4
≤
HeightCharacter
HeightCharacter
HeightCharacter
heightCharacter
height_character
≤
20
InterpolationInterpolationInterpolationinterpolationinterpolation
(input_control) string →
HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Interpolation mode for the zooming of the characters.
Default:
'constant'
"constant"
"constant"
"constant"
"constant"
List of values:
'bicubic'"bicubic""bicubic""bicubic""bicubic", 'bilinear'"bilinear""bilinear""bilinear""bilinear", 'constant'"constant""constant""constant""constant", 'nearest_neighbor'"nearest_neighbor""nearest_neighbor""nearest_neighbor""nearest_neighbor", 'weighted'"weighted""weighted""weighted""weighted"
FeaturesFeaturesFeaturesfeaturesfeatures
(input_control) string(-array) →
HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)
Features to be used for classification.
Default:
'default'
"default"
"default"
"default"
"default"
List of values:
'anisometry'"anisometry""anisometry""anisometry""anisometry", 'chord_histo'"chord_histo""chord_histo""chord_histo""chord_histo", 'compactness'"compactness""compactness""compactness""compactness", 'convexity'"convexity""convexity""convexity""convexity", 'cooc'"cooc""cooc""cooc""cooc", 'default'"default""default""default""default", 'foreground'"foreground""foreground""foreground""foreground", 'foreground_grid_16'"foreground_grid_16""foreground_grid_16""foreground_grid_16""foreground_grid_16", 'foreground_grid_9'"foreground_grid_9""foreground_grid_9""foreground_grid_9""foreground_grid_9", 'gradient_8dir'"gradient_8dir""gradient_8dir""gradient_8dir""gradient_8dir", 'height'"height""height""height""height", 'moments_central'"moments_central""moments_central""moments_central""moments_central", 'moments_gray_plane'"moments_gray_plane""moments_gray_plane""moments_gray_plane""moments_gray_plane", 'moments_region_2nd_invar'"moments_region_2nd_invar""moments_region_2nd_invar""moments_region_2nd_invar""moments_region_2nd_invar", 'moments_region_2nd_rel_invar'"moments_region_2nd_rel_invar""moments_region_2nd_rel_invar""moments_region_2nd_rel_invar""moments_region_2nd_rel_invar", 'moments_region_3rd_invar'"moments_region_3rd_invar""moments_region_3rd_invar""moments_region_3rd_invar""moments_region_3rd_invar", 'num_connect'"num_connect""num_connect""num_connect""num_connect", 'num_holes'"num_holes""num_holes""num_holes""num_holes", 'num_runs'"num_runs""num_runs""num_runs""num_runs", 'phi'"phi""phi""phi""phi", 'pixel'"pixel""pixel""pixel""pixel", 'pixel_binary'"pixel_binary""pixel_binary""pixel_binary""pixel_binary", 'pixel_invar'"pixel_invar""pixel_invar""pixel_invar""pixel_invar", 'projection_horizontal'"projection_horizontal""projection_horizontal""projection_horizontal""projection_horizontal", 'projection_horizontal_invar'"projection_horizontal_invar""projection_horizontal_invar""projection_horizontal_invar""projection_horizontal_invar", 'projection_vertical'"projection_vertical""projection_vertical""projection_vertical""projection_vertical", 'projection_vertical_invar'"projection_vertical_invar""projection_vertical_invar""projection_vertical_invar""projection_vertical_invar", 'ratio'"ratio""ratio""ratio""ratio", 'width'"width""width""width""width", 'zoom_factor'"zoom_factor""zoom_factor""zoom_factor""zoom_factor"
CharactersCharactersCharacterscharacterscharacters
(input_control) string-array →
HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)
All characters of the character set to be read.
Default:
['0','1','2','3','4','5','6','7','8','9']
["0","1","2","3","4","5","6","7","8","9"]
["0","1","2","3","4","5","6","7","8","9"]
["0","1","2","3","4","5","6","7","8","9"]
["0","1","2","3","4","5","6","7","8","9"]
NumHiddenNumHiddenNumHiddennumHiddennum_hidden
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Number of hidden units of the MLP.
Default:
80
Suggested values:
1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150
Restriction:
NumHidden >= 1
PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
(input_control) string →
HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Type of preprocessing used to transform the
feature vectors.
Default:
'none'
"none"
"none"
"none"
"none"
List of values:
'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates", 'none'"none""none""none""none", 'normalization'"normalization""normalization""normalization""normalization", 'principal_components'"principal_components""principal_components""principal_components""principal_components"
NumComponentsNumComponentsNumComponentsnumComponentsnum_components
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Preprocessing parameter: Number of transformed
features (ignored for PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
=
'none'"none""none""none""none" and PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
=
'normalization'"normalization""normalization""normalization""normalization").
Default:
10
Suggested values:
1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100
Restriction:
NumComponents >= 1
RandSeedRandSeedRandSeedrandSeedrand_seed
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Seed value of the random number generator that
is used to initialize the MLP with random values.
Default:
42
OCRHandleOCRHandleOCRHandleOCRHandleocrhandle
(output_control) ocr_mlp →
HOCRMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of the OCR classifier.
Example (HDevelop)
read_image (Image, 'letters')
* Segment the image.
binary_threshold(Image,&Region, 'otsu', 'dark', &UsedThreshold);
dilation_circle (Region, RegionDilation, 3.5)
connection (RegionDilation, ConnectedRegions)
intersection (ConnectedRegions, Region, RegionIntersection)
sort_region (RegionIntersection, Characters, 'character', 'true', 'row')
* Generate the training file.
count_obj (Characters, Number)
Classes := []
for J := 0 to 25 by 1
Classes := [Classes,gen_tuple_const(20,chr(ord('a')+J))]
endfor
Classes := [Classes,gen_tuple_const(20,'.')]
write_ocr_trainf (Characters, Image, Classes, 'letters.trf')
* Generate and train the classifier.
read_ocr_trainf_names ('letters.trf', CharacterNames, CharacterCount)
create_ocr_class_mlp (8, 10, 'constant', 'default', CharacterNames, 20, \
'none', 81, 42, OCRHandle)
trainf_ocr_class_mlp (OCRHandle, 'letters.trf', 100, 0.01, 0.01, Error, \
ErrorLog)
* Re-classify the characters in the image.
do_ocr_multi_class_mlp (Characters, Image, OCRHandle, Class, Confidence)
Result
If the parameters are valid, the operator
create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp
returns the value 2 (
H_MSG_TRUE)
. If necessary,
an exception is raised.
Possible Successors
trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlptrainf_ocr_class_mlp
,
set_regularization_params_ocr_class_mlpset_regularization_params_ocr_class_mlpSetRegularizationParamsOcrClassMlpSetRegularizationParamsOcrClassMlpset_regularization_params_ocr_class_mlp
,
set_rejection_params_ocr_class_mlpset_rejection_params_ocr_class_mlpSetRejectionParamsOcrClassMlpSetRejectionParamsOcrClassMlpset_rejection_params_ocr_class_mlp
Alternatives
create_ocr_class_svmcreate_ocr_class_svmCreateOcrClassSvmCreateOcrClassSvmcreate_ocr_class_svm
See also
do_ocr_single_class_mlpdo_ocr_single_class_mlpDoOcrSingleClassMlpDoOcrSingleClassMlpdo_ocr_single_class_mlp
,
do_ocr_multi_class_mlpdo_ocr_multi_class_mlpDoOcrMultiClassMlpDoOcrMultiClassMlpdo_ocr_multi_class_mlp
,
clear_ocr_class_mlpclear_ocr_class_mlpClearOcrClassMlpClearOcrClassMlpclear_ocr_class_mlp
,
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp
,
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlptrain_class_mlp
,
classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
Module
OCR/OCV