Operator Reference
eigenvalues_symmetric_matrix (Operator)
eigenvalues_symmetric_matrix
— Compute the eigenvalues and optionally eigenvectors of a symmetric
matrix.
Signature
eigenvalues_symmetric_matrix( : : MatrixID, ComputeEigenvectors : EigenvaluesID, EigenvectorsID)
Description
The operator eigenvalues_symmetric_matrix
computes all
eigenvalues and, optionally, eigenvectors of the symmetric
Matrix
. The matrix is defined by the matrix handle
MatrixID
. On output, a new matrix Eigenvalues
with the eigenvalues in ascending order and, optionally, a new matrix
Eigenvectors
with the eigenvectors is created. The
operator returns the matrix handles EigenvaluesID
and
EigenvectorsID
of the matrices Eigenvalues
and
Eigenvectors
. Access to the elements of the matrices is
possible e.g., with the operator get_full_matrix
.
The computation of eigenvectors can be selected via
ComputeEigenvectors
= 'true' or
ComputeEigenvectors
= 'false' .
Example:
ComputeEigenvectors
= 'true'
Attention
The upper triangular part of the input Matrix
must
contain the relevant information of the matrix. The strictly
lower triangular part of the matrix is not referenced. If the
referenced part of the input Matrix
is not of the
specified type, an exception is raised.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
MatrixID
(input_control) matrix →
(handle)
Matrix handle of the input matrix.
ComputeEigenvectors
(input_control) string →
(string)
Computation of the eigenvectors.
Default: 'false'
List of values: 'false' , 'true'
EigenvaluesID
(output_control) matrix →
(handle)
Matrix handle with the eigenvalues.
EigenvectorsID
(output_control) matrix →
(handle)
Matrix handle with the eigenvectors.
Result
If the parameters are valid, the operator
eigenvalues_symmetric_matrix
returns the value 2 (
H_MSG_TRUE)
. If
necessary, an exception is raised.
Possible Predecessors
Possible Successors
get_full_matrix
,
get_value_matrix
Alternatives
See also
generalized_eigenvalues_symmetric_matrix
,
generalized_eigenvalues_general_matrix
References
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
Module
Foundation