Operator Reference
gen_nurbs_interp (Operator)
gen_nurbs_interp
— Create control data of a NURBS curve that interpolates given points.
Signature
Description
gen_nurbs_interp
creates the NURBS control data
CtrlRows
, CtrlCols
, and Knots
of a NURBS
curve that interpolates the input points (Rows
, Cols
).
If the input point list is not closed (i.e., the first point is identical to
the last point), the tangents of the first and last point must be given
in Tangents
in the order [drow_{0},dcol_{0},drow_{n-1},dcol_{n-1}]
(for closed point lists, Tangents
must be an empty tuple).
Furthermore the Degree
of the NURBS curve must be specified.
The output of gen_nurbs_interp
can be used directly with
gen_contour_nurbs_xld
with the weights vector set to
'auto' .
See the documentation of gen_contour_nurbs_xld
for more information
on NURBS curves.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
Rows
(input_control) coordinates.y-array →
(real)
Row coordinates of input point list.
Number of elements: Rows == Cols
Cols
(input_control) coordinates.x-array →
(real)
Column coordinates of input point list.
Number of elements: Cols == Rows
Tangents
(input_control) real-array →
(real)
Tangents at first and last point.
Default: []
Degree
(input_control) integer →
(integer)
Order of the output curve.
Default: 3
Suggested values: 2, 3, 4, 5
Restriction:
Degree >= 2
CtrlRows
(output_control) coordinates.y-array →
(real)
Row coordinates of the control polygon.
CtrlCols
(output_control) coordinates.x-array →
(real)
Column coordinates of the control polygon.
Number of elements: Cols == Rows
Knots
(output_control) real-array →
(real)
The knot vector of the output curve.
Result
If all input parameters are correct gen_nurbs_interp
returns the
value 2 (
H_MSG_TRUE)
.
Possible Successors
See also
draw_nurbs_interp
,
draw_nurbs_interp_mod
References
L. Piegl, W. Tiller: ”The NURBS Book”, 2nd Edition, Springer, 1997.
Module
Foundation