Operator Reference
laplace_of_gauss (Operator)
laplace_of_gauss
— LoG-Operator (Laplace of Gaussian).
Signature
laplace_of_gauss(Image : ImageLaplace : Sigma : )
Description
laplace_of_gauss
calculates the Laplace-of-Gaussian
operator, i.e., the Laplace operator on a Gaussian smoothed image,
for arbitrary smoothing parameters Sigma
. The Laplace
operator is given by:
The derivatives in laplace_of_gauss
are calculated by
appropriate derivatives of the Gaussian, resulting in the following
formula for the convolution mask:
Attention
Note that filter operators may return may return unexpected results if an image with a reduced domain is used as input. Please refer to the chapter Filters.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Automatically parallelized on tuple level.
- Automatically parallelized on channel level.
- Automatically parallelized on domain level.
Parameters
Image
(input_object) (multichannel-)image(-array) →
object (byte / int1 / int2 / uint2 / int4 / real)
Input image.
ImageLaplace
(output_object) (multichannel-)image(-array) →
object (int2)
Laplace filtered image.
Sigma
(input_control) number →
(real / integer)
Smoothing parameter of the Gaussian.
Default: 2.0
Suggested values: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0
Value range:
0.01
≤
Sigma
≤
25.0
Minimum increment: 0.01
Recommended increment: 0.1
Example (C)
read_image(&Image,"mreut"); laplace_of_gauss(Image,&Laplace,2.0); zero_crossing(Laplace,&ZeroCrossings);
Possible Successors
Alternatives
laplace
,
diff_of_gauss
,
derivate_gauss
See also
Module
Foundation