Operator Reference
nonmax_suppression_amp (Operator)
nonmax_suppression_amp
— Suppress non-maximum points on an edge.
Signature
nonmax_suppression_amp(ImgAmp : ImageResult : Mode : )
Description
nonmax_suppression_amp
suppresses all points in the
regions of the image ImgAmp
whose gray values are
not local (directed) maxima. In contrast to
nonmax_suppression_dir
, a direction image is not needed.
Two modes of operation can be selected:
- 'hvnms'
A point is labeled as a local maximum if its gray value is larger than or equal to the gray values within a search space of pm 5 pixels, either horizontally or vertically. Non-maximum points are removed from the region, gray values remain unchanged.
- 'loc_max'
A point is labeled as a local maximum if its gray value is larger than or equal to the gray values of its eight neighbors.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Automatically parallelized on tuple level.
Parameters
ImgAmp
(input_object) singlechannelimage(-array) →
object (byte / uint2 / real)
Amplitude (gradient magnitude) image.
ImageResult
(output_object) singlechannelimage(-array) →
object (byte / uint2 / real)
Image with thinned edge regions.
Mode
(input_control) string →
(string)
Select horizontal/vertical or undirected NMS.
Default: 'hvnms'
List of values: 'hvnms' , 'loc_max'
Result
nonmax_suppression_amp
returns 2 (
H_MSG_TRUE)
if all parameters
are correct. The behavior with respect to the input images and
output regions can be determined by setting the values of the flags
'no_object_result' , 'empty_region_result' , and
'store_empty_region' with set_system
.
If necessary, an exception is raised.
Possible Predecessors
Possible Successors
threshold
,
hysteresis_threshold
Alternatives
local_max
,
nonmax_suppression_dir
See also
References
S.Lanser: “Detektion von Stufenkanten mittels rekursiver Filter nach
Deriche”; Diplomarbeit; Technische Universität München, Institut
für Informatik, Lehrstuhl Prof. Radig; 1991.
J.Canny: “Finding Edges and Lines in Images”; Report, AI-TR-720;
M.I.T. Artificial Intelligence Lab., Cambridge, MA; 1983.
Module
Foundation