Operator Reference
norm_matrix (Operator)
norm_matrix
— Norm of a matrix.
Signature
Description
The operator norm_matrix
computes the norm of the elements
of the Matrix
defined by the matrix handle
MatrixID
. The return value is a floating point number.
The type of norming of the matrix can be selected via the parameter
NormType
:
- 'frobenius-norm' :
-
The Frobenius norm is computed. The formula for the calculation of the result is: with m = number of rows and n = number of columns of the
Matrix
.Example:
- 'infinity-norm' :
-
The infinity norm is computed. The result is the largest value of the sum of the absolute values of the elements of the rows. The formula for the calculation is: with m = number of rows and n = number of columns of the
Matrix
.Example:
- '1-norm' :
-
The 1-norm is computed. The result is the largest value of the sum of the absolute values of the elements of the columns. The formula for the calculation is: with m = number of rows and n = number of columns of the
Matrix
.Example:
- '2-norm' :
-
The 2-norm is computed. The result is the largest singular value of the
Matrix
. The formula for the calculation of the result is:Example:
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
MatrixID
(input_control) matrix →
(handle)
Matrix handle of the input matrix.
NormType
(input_control) string →
(string)
Type of norm.
Default: '2-norm'
List of values: '1-norm' , '2-norm' , 'frobenius-norm' , 'infinity-norm'
Value
(output_control) real →
(real)
Norm of the input matrix.
Result
If the parameters are valid, the operator norm_matrix
returns the value 2 (
H_MSG_TRUE)
. If necessary, an exception is raised.
Possible Predecessors
See also
References
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
Module
Foundation