Operator Reference

smallest_rectangle2smallest_rectangle2SmallestRectangle2SmallestRectangle2smallest_rectangle2 (Operator)

smallest_rectangle2smallest_rectangle2SmallestRectangle2SmallestRectangle2smallest_rectangle2 — Smallest surrounding rectangle with any orientation.

Signature

smallest_rectangle2(Regions : : : Row, Column, Phi, Length1, Length2)

Herror smallest_rectangle2(const Hobject Regions, double* Row, double* Column, double* Phi, double* Length1, double* Length2)

Herror T_smallest_rectangle2(const Hobject Regions, Htuple* Row, Htuple* Column, Htuple* Phi, Htuple* Length1, Htuple* Length2)

void SmallestRectangle2(const HObject& Regions, HTuple* Row, HTuple* Column, HTuple* Phi, HTuple* Length1, HTuple* Length2)

void HRegion::SmallestRectangle2(HTuple* Row, HTuple* Column, HTuple* Phi, HTuple* Length1, HTuple* Length2) const

void HRegion::SmallestRectangle2(double* Row, double* Column, double* Phi, double* Length1, double* Length2) const

static void HOperatorSet.SmallestRectangle2(HObject regions, out HTuple row, out HTuple column, out HTuple phi, out HTuple length1, out HTuple length2)

void HRegion.SmallestRectangle2(out HTuple row, out HTuple column, out HTuple phi, out HTuple length1, out HTuple length2)

void HRegion.SmallestRectangle2(out double row, out double column, out double phi, out double length1, out double length2)

def smallest_rectangle2(regions: HObject) -> Tuple[Sequence[float], Sequence[float], Sequence[float], Sequence[float], Sequence[float]]

def smallest_rectangle2_s(regions: HObject) -> Tuple[float, float, float, float, float]

Description

The operator smallest_rectangle2smallest_rectangle2SmallestRectangle2SmallestRectangle2smallest_rectangle2 determines the smallest surrounding rectangle of a region, i.e., the rectangle with the smallest area of all rectangles containing the region. For this rectangle the center, the inclination and the two radii are calculated. The calculation of the rectangle is based on the center coordinates of the region pixels.

In the documentation of this chapter (Regions / Features), you can find an image illustrating regions which vary in the length and phi of their smallest surrounding rectangle.

The smallest surrounding rectangle of a region. Note that the calculation is based on the center coordinates of the region pixels.

The operator is applied when, for example, the location of a scenery of several regions (e.g., printed text on a rectangular paper or in rectangular print (justified lines)) must be found. The parameters of smallest_rectangle2smallest_rectangle2SmallestRectangle2SmallestRectangle2smallest_rectangle2 are chosen in such a way that they can be used directly as input for the operators disp_rectangle2disp_rectangle2DispRectangle2DispRectangle2disp_rectangle2 and gen_rectangle2gen_rectangle2GenRectangle2GenRectangle2gen_rectangle2.

If more than one region is passed in RegionsRegionsRegionsregionsregions the results are stored in tuples, the index of a value in the tuple corresponding to the index of a region in the input. In case of empty region all parameters have the value 0.0 if no other behavior was set (see set_systemset_systemSetSystemSetSystemset_system).

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Automatically parallelized on tuple level.

Parameters

RegionsRegionsRegionsregionsregions (input_object)  region(-array) objectHRegionHObjectHObjectHobject

Regions to be examined.

RowRowRowrowrow (output_control)  rectangle2.center.y(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Line index of the center.

ColumnColumnColumncolumncolumn (output_control)  rectangle2.center.x(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Column index of the center.

PhiPhiPhiphiphi (output_control)  rectangle2.angle.rad(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Orientation of the surrounding rectangle (arc measure)

Assertion: - pi / 2 < Phi && Phi <= pi / 2

Length1Length1Length1length1length_1 (output_control)  rectangle2.hwidth(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

First radius (half length) of the surrounding rectangle.

Assertion: Length1 >= 0.0

Length2Length2Length2length2length_2 (output_control)  rectangle2.hheight(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Second radius (half width) of the surrounding rectangle.

Assertion: Length2 >= 0.0 && Length2 <= Length1

Example (HDevelop)

read_image(Image,'fabrik')
regiongrowing(Image,Regions,5,5,6,100)
smallest_rectangle2(Regions,Row,Column,Phi,Length1,Length2)
gen_rectangle2(Rectangle,Row,Column,Phi,Length1,Length2)
dev_set_draw ('margin')
dev_display(Rectangle)

Example (HDevelop)

read_image(Image,'fabrik')
regiongrowing(Image,Regions,5,5,6,100)
smallest_rectangle2(Regions,Row,Column,Phi,Length1,Length2)
gen_rectangle2(Rectangle,Row,Column,Phi,Length1,Length2)
dev_set_draw ('margin')
dev_display(Rectangle)

Example (C++)

#include "HIOStream.h"
#if !defined(USE_IOSTREAM_H)
using namespace std;
#endif
#include "HalconCpp.h"
using namespace Halcon;

int main (int argc, char *argv[])
{
  Tuple    row, col, phi, len1, len2;

  HImage   img (argv[1]);
  HWindow  w;

  img.Display (w);

  HRegionArray  reg  = img.Regiongrowing (5, 5, 6.0, 100);
  HRegionArray  seg  = reg.SelectShape ("area", "and", 100.0, 1000.0);

  row = seg.SmallestRectangle2 (&col, &phi, &len1, &len2);

  HRegionArray rect = HRegionArray::GenRectangle2 (row, col, phi, len1, len2);

  w.SetDraw   ("margin");
  w.SetColor  ("green");   reg.Display (w);
  w.SetColor  ("blue");    seg.Display (w);
  w.SetColor  ("red");     rect.Display (w);
  w.Click ();

  return(0);
}

Example (HDevelop)

read_image(Image,'fabrik')
regiongrowing(Image,Regions,5,5,6,100)
smallest_rectangle2(Regions,Row,Column,Phi,Length1,Length2)
gen_rectangle2(Rectangle,Row,Column,Phi,Length1,Length2)
dev_set_draw ('margin')
dev_display(Rectangle)

Complexity

If F is the area of the region and N is the number of supporting points of the convex hull, the runtime complexity is O(sqrt(F) + N^2).

Result

The operator smallest_rectangle2smallest_rectangle2SmallestRectangle2SmallestRectangle2smallest_rectangle2 returns the value 2 ( H_MSG_TRUE) if the input is not empty. The behavior in case of empty input (no input regions available) is set via the operator set_system('no_object_result',<Result>)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)set_system("no_object_result",<Result>). The behavior in case of empty region (the region is the empty set) is set via set_system('empty_region_result',<Result>)set_system("empty_region_result",<Result>)SetSystem("empty_region_result",<Result>)SetSystem("empty_region_result",<Result>)set_system("empty_region_result",<Result>). If necessary an exception is raised.

Possible Predecessors

thresholdthresholdThresholdThresholdthreshold, regiongrowingregiongrowingRegiongrowingRegiongrowingregiongrowing, connectionconnectionConnectionConnectionconnection, runlength_featuresrunlength_featuresRunlengthFeaturesRunlengthFeaturesrunlength_features

Possible Successors

disp_rectangle2disp_rectangle2DispRectangle2DispRectangle2disp_rectangle2, gen_rectangle2gen_rectangle2GenRectangle2GenRectangle2gen_rectangle2

Alternatives

elliptic_axiselliptic_axisEllipticAxisEllipticAxiselliptic_axis, smallest_rectangle1smallest_rectangle1SmallestRectangle1SmallestRectangle1smallest_rectangle1

See also

smallest_circlesmallest_circleSmallestCircleSmallestCirclesmallest_circle, set_shapeset_shapeSetShapeSetShapeset_shape

Module

Foundation