Operator Reference

affine_trans_contour_xldT_affine_trans_contour_xldAffineTransContourXldAffineTransContourXldaffine_trans_contour_xld (Operator)

affine_trans_contour_xldT_affine_trans_contour_xldAffineTransContourXldAffineTransContourXldaffine_trans_contour_xld — Apply an arbitrary affine 2D transformation to XLD contours.

Signature

affine_trans_contour_xld(Contours : ContoursAffineTrans : HomMat2D : )

Herror T_affine_trans_contour_xld(const Hobject Contours, Hobject* ContoursAffineTrans, const Htuple HomMat2D)

void AffineTransContourXld(const HObject& Contours, HObject* ContoursAffineTrans, const HTuple& HomMat2D)

HXLDCont HXLDCont::AffineTransContourXld(const HHomMat2D& HomMat2D) const

HXLDCont HHomMat2D::AffineTransContourXld(const HXLDCont& Contours) const

static void HOperatorSet.AffineTransContourXld(HObject contours, out HObject contoursAffineTrans, HTuple homMat2D)

HXLDCont HXLDCont.AffineTransContourXld(HHomMat2D homMat2D)

HXLDCont HHomMat2D.AffineTransContourXld(HXLDCont contours)

def affine_trans_contour_xld(contours: HObject, hom_mat_2d: Sequence[float]) -> HObject

Description

affine_trans_contour_xldaffine_trans_contour_xldAffineTransContourXldAffineTransContourXldaffine_trans_contour_xld applies an arbitrary affine 2D transformation, i.e., scaling, rotation, translation, and slant (skewing), to the XLD contours given in ContoursContoursContourscontourscontours and returns the transformed contours in ContoursAffineTransContoursAffineTransContoursAffineTranscontoursAffineTranscontours_affine_trans. The affine transformation is described by the homogeneous transformation matrix given in HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d, which can be created using the operators hom_mat2d_identityhom_mat2d_identityHomMat2dIdentityHomMat2dIdentityhom_mat2d_identity, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScalehom_mat2d_scale, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslatehom_mat2d_translate, etc., or be the result of operators like vector_angle_to_rigidvector_angle_to_rigidVectorAngleToRigidVectorAngleToRigidvector_angle_to_rigid.

The components of the homogeneous transformation matrix are interpreted as follows: The row coordinate of the image corresponds to x and the column coordinate corresponds to y of the coordinate system in which the transformation matrix was defined. This is necessary to obtain a right-handed coordinate system for the image. In particular, this assures that rotations are performed in the correct direction. Note that the (x,y) order of the matrices quite naturally corresponds to the usual (row,column) order for coordinates in the image.

Attention

affine_trans_contour_xldaffine_trans_contour_xldAffineTransContourXldAffineTransContourXldaffine_trans_contour_xld does not use the HALCON standard coordinate system (with the origin in the center of the upper left pixel), but instead uses the same coordinate system as in affine_trans_pixelaffine_trans_pixelAffineTransPixelAffineTransPixelaffine_trans_pixel, i.e., the origin lies in the upper left corner of the upper left pixel. Therefore, applying affine_trans_contour_xldaffine_trans_contour_xldAffineTransContourXldAffineTransContourXldaffine_trans_contour_xld corresponds to a chain of transformations (see affine_trans_pixelaffine_trans_pixelAffineTransPixelAffineTransPixelaffine_trans_pixel), which is applied to each point of the contour (input and output pixels as homogeneous vectors). As an effect, you might get unexpected results when creating affine transformations based on coordinates that are derived from the contour, e.g., by operators like area_center_xldarea_center_xldAreaCenterXldAreaCenterXldarea_center_xld. For example, if you use this operator to calculate the center of gravity of a rotationally symmetric XLD contour and then rotate the contour around this point using hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, the resulting contour will not lie on the original one. In such a case, you can compensate this effect by applying the following translations to HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d before using it in affine_trans_contour_xldaffine_trans_contour_xldAffineTransContourXldAffineTransContourXldaffine_trans_contour_xld:

hom_mat2d_translate(HomMat2D, 0.5, 0.5, HomMat2DTmp)hom_mat2d_translate(HomMat2D, 0.5, 0.5, HomMat2DTmp)HomMat2dTranslate(HomMat2D, 0.5, 0.5, HomMat2DTmp)HomMat2dTranslate(HomMat2D, 0.5, 0.5, HomMat2DTmp)hom_mat2d_translate(HomMat2D, 0.5, 0.5, HomMat2DTmp)
hom_mat2d_translate_local(HomMat2DTmp, -0.5, -0.5, HomMat2DAdapted)hom_mat2d_translate_local(HomMat2DTmp, -0.5, -0.5, HomMat2DAdapted)HomMat2dTranslateLocal(HomMat2DTmp, -0.5, -0.5, HomMat2DAdapted)HomMat2dTranslateLocal(HomMat2DTmp, -0.5, -0.5, HomMat2DAdapted)hom_mat2d_translate_local(HomMat2DTmp, -0.5, -0.5, HomMat2DAdapted)
affine_trans_contour_xld(Contours, ContoursAffineTrans, HomMat2DAdapted)affine_trans_contour_xld(Contours, ContoursAffineTrans, HomMat2DAdapted)AffineTransContourXld(Contours, ContoursAffineTrans, HomMat2DAdapted)AffineTransContourXld(Contours, ContoursAffineTrans, HomMat2DAdapted)affine_trans_contour_xld(Contours, ContoursAffineTrans, HomMat2DAdapted)

For an explanation of the different 2D coordinate systems used in HALCON, see the introduction of chapter Transformations / 2D Transformations.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Automatically parallelized on tuple level.

Parameters

ContoursContoursContourscontourscontours (input_object)  xld_cont(-array) objectHXLDContHObjectHObjectHobject

Input XLD contours.

ContoursAffineTransContoursAffineTransContoursAffineTranscontoursAffineTranscontours_affine_trans (output_object)  xld_cont(-array) objectHXLDContHObjectHObjectHobject *

Transformed XLD contours.

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (input_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Input transformation matrix.

Result

If the matrix HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d represents an affine transformation (i.e., not a projective transformation), affine_trans_contour_xldaffine_trans_contour_xldAffineTransContourXldAffineTransContourXldaffine_trans_contour_xld returns 2 ( H_MSG_TRUE) . If the input is empty the behavior can be set via set_system(::'no_object_result',<Result>:)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)set_system("no_object_result",<Result>). If necessary, an exception is raised.

Possible Predecessors

hom_mat2d_identityhom_mat2d_identityHomMat2dIdentityHomMat2dIdentityhom_mat2d_identity, hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslatehom_mat2d_translate, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScalehom_mat2d_scale, hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflecthom_mat2d_reflect

See also

affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageaffine_trans_image, affine_trans_regionaffine_trans_regionAffineTransRegionAffineTransRegionaffine_trans_region

Module

Foundation