Operator Reference

create_class_gmmT_create_class_gmmCreateClassGmmCreateClassGmmcreate_class_gmm (Operator)

create_class_gmmT_create_class_gmmCreateClassGmmCreateClassGmmcreate_class_gmm — Create a Gaussian Mixture Model for classification

Signature

Herror T_create_class_gmm(const Htuple NumDim, const Htuple NumClasses, const Htuple NumCenters, const Htuple CovarType, const Htuple Preprocessing, const Htuple NumComponents, const Htuple RandSeed, Htuple* GMMHandle)

void CreateClassGmm(const HTuple& NumDim, const HTuple& NumClasses, const HTuple& NumCenters, const HTuple& CovarType, const HTuple& Preprocessing, const HTuple& NumComponents, const HTuple& RandSeed, HTuple* GMMHandle)

void HClassGmm::HClassGmm(Hlong NumDim, Hlong NumClasses, const HTuple& NumCenters, const HString& CovarType, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)

void HClassGmm::HClassGmm(Hlong NumDim, Hlong NumClasses, Hlong NumCenters, const HString& CovarType, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)

void HClassGmm::HClassGmm(Hlong NumDim, Hlong NumClasses, Hlong NumCenters, const char* CovarType, const char* Preprocessing, Hlong NumComponents, Hlong RandSeed)

void HClassGmm::HClassGmm(Hlong NumDim, Hlong NumClasses, Hlong NumCenters, const wchar_t* CovarType, const wchar_t* Preprocessing, Hlong NumComponents, Hlong RandSeed)   ( Windows only)

void HClassGmm::CreateClassGmm(Hlong NumDim, Hlong NumClasses, const HTuple& NumCenters, const HString& CovarType, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)

void HClassGmm::CreateClassGmm(Hlong NumDim, Hlong NumClasses, Hlong NumCenters, const HString& CovarType, const HString& Preprocessing, Hlong NumComponents, Hlong RandSeed)

void HClassGmm::CreateClassGmm(Hlong NumDim, Hlong NumClasses, Hlong NumCenters, const char* CovarType, const char* Preprocessing, Hlong NumComponents, Hlong RandSeed)

void HClassGmm::CreateClassGmm(Hlong NumDim, Hlong NumClasses, Hlong NumCenters, const wchar_t* CovarType, const wchar_t* Preprocessing, Hlong NumComponents, Hlong RandSeed)   ( Windows only)

static void HOperatorSet.CreateClassGmm(HTuple numDim, HTuple numClasses, HTuple numCenters, HTuple covarType, HTuple preprocessing, HTuple numComponents, HTuple randSeed, out HTuple GMMHandle)

public HClassGmm(int numDim, int numClasses, HTuple numCenters, string covarType, string preprocessing, int numComponents, int randSeed)

public HClassGmm(int numDim, int numClasses, int numCenters, string covarType, string preprocessing, int numComponents, int randSeed)

void HClassGmm.CreateClassGmm(int numDim, int numClasses, HTuple numCenters, string covarType, string preprocessing, int numComponents, int randSeed)

void HClassGmm.CreateClassGmm(int numDim, int numClasses, int numCenters, string covarType, string preprocessing, int numComponents, int randSeed)

def create_class_gmm(num_dim: int, num_classes: int, num_centers: MaybeSequence[int], covar_type: str, preprocessing: str, num_components: int, rand_seed: int) -> HHandle

Description

create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmcreate_class_gmm creates a Gaussian Mixture Model (GMM) for classification. NumDimNumDimNumDimnumDimnum_dim specifies the number of dimensions of the feature space, NumClassesNumClassesNumClassesnumClassesnum_classes specifies the number of classes. A GMM consists of NumCentersNumCentersNumCentersnumCentersnum_centers Gaussian centers per class. NumCentersNumCentersNumCentersnumCentersnum_centers can not only be the exact number of centers to be used, but, depending on the number of parameters, can specify upper and lower bounds for the number of centers:

exactly one parameter:

The parameter determines the exact number of centers to be used for all classes.

exactly two parameters:

The first parameter determines the minimum number of centers, the second determines the maximum number of centers for all classes.

exactly parameters:

Alternatingly every first parameter determines the minimum number of centers per class and every second parameters determines the maximum number of centers per class.

When upper and lower bounds are specified, the optimum number of centers will be determined with the help of the Minimum Message Length Criterion (MML). In general, we recommend to start the training with (too) many centers as maximum and the expected number of centers as minimum.

Each center is described by the parameters center , covariance matrix , and mixing coefficient . These parameters are calculated from the training data by means of the Expectation Maximization (EM) algorithm. A GMM can approximate an arbitrary probability density, provided that enough centers are being used. The covariance matrices have the dimensions NumDimNumDimNumDimnumDimnum_dim x NumDimNumDimNumDimnumDimnum_dim (NumComponentsNumComponentsNumComponentsnumComponentsnum_components x NumComponentsNumComponentsNumComponentsnumComponentsnum_components if preprocessing is used) and are symmetric. Further constraints can be given by CovarTypeCovarTypeCovarTypecovarTypecovar_type:

For CovarTypeCovarTypeCovarTypecovarTypecovar_type = 'spherical'"spherical""spherical""spherical""spherical", is a scalar multiple of the identity matrix . The center density function is

For CovarTypeCovarTypeCovarTypecovarTypecovar_type = 'diag'"diag""diag""diag""diag", is a diagonal matrix . The center density function is

For CovarTypeCovarTypeCovarTypecovarTypecovar_type = 'full'"full""full""full""full", is a positive definite matrix. The center density function is

The complexity of the calculations increases from CovarTypeCovarTypeCovarTypecovarTypecovar_type = 'spherical'"spherical""spherical""spherical""spherical" over CovarTypeCovarTypeCovarTypecovarTypecovar_type = 'diag'"diag""diag""diag""diag" to CovarTypeCovarTypeCovarTypecovarTypecovar_type = 'full'"full""full""full""full". At the same time the flexibility of the centers increases. In general, 'spherical'"spherical""spherical""spherical""spherical" therefore needs higher values for NumCentersNumCentersNumCentersnumCentersnum_centers than 'full'"full""full""full""full".

The procedure to use GMM is as follows: First, a GMM is created by create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmcreate_class_gmm. Then, training vectors are added by add_sample_class_gmmadd_sample_class_gmmAddSampleClassGmmAddSampleClassGmmadd_sample_class_gmm, afterwards they can be written to disk with write_samples_class_gmmwrite_samples_class_gmmWriteSamplesClassGmmWriteSamplesClassGmmwrite_samples_class_gmm. With train_class_gmmtrain_class_gmmTrainClassGmmTrainClassGmmtrain_class_gmm the classifier center parameters (defined above) are determined. Furthermore, they can be saved with write_class_gmmwrite_class_gmmWriteClassGmmWriteClassGmmwrite_class_gmm for later classifications.

From the mixing probabilities and the center density function , the probability density function p(x) can be calculated by:

The probability density function p(x) can be evaluated with evaluate_class_gmmevaluate_class_gmmEvaluateClassGmmEvaluateClassGmmevaluate_class_gmm for a feature vector x. classify_class_gmmclassify_class_gmmClassifyClassGmmClassifyClassGmmclassify_class_gmm sorts the p(x) and therefore discovers the most probable class of the feature vector.

The parameters PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing and NumComponentsNumComponentsNumComponentsnumComponentsnum_components can be used to preprocess the training data and reduce its dimensions. These parameters are explained in the description of the operator create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp.

create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmcreate_class_gmm initializes the coordinates of the centers with random numbers. To ensure that the results of training the classifier with train_class_gmmtrain_class_gmmTrainClassGmmTrainClassGmmtrain_class_gmm are reproducible, the seed value of the random number generator is passed in RandSeedRandSeedRandSeedrandSeedrand_seed.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Processed without parallelization.

This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even though the handle is used as an input parameter by those operators.

Parameters

NumDimNumDimNumDimnumDimnum_dim (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of dimensions of the feature space.

Default: 3

Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100

Restriction: NumDim >= 1

NumClassesNumClassesNumClassesnumClassesnum_classes (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of classes of the GMM.

Default: 5

Suggested values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Restriction: NumClasses >= 1

NumCentersNumCentersNumCentersnumCentersnum_centers (input_control)  integer(-array) HTupleMaybeSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of centers per class.

Default: 1

Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30

Restriction: NumClasses >= 1

CovarTypeCovarTypeCovarTypecovarTypecovar_type (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Type of the covariance matrices.

Default: 'spherical' "spherical" "spherical" "spherical" "spherical"

List of values: 'diag'"diag""diag""diag""diag", 'full'"full""full""full""full", 'spherical'"spherical""spherical""spherical""spherical"

PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Type of preprocessing used to transform the feature vectors.

Default: 'normalization' "normalization" "normalization" "normalization" "normalization"

List of values: 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates", 'none'"none""none""none""none", 'normalization'"normalization""normalization""normalization""normalization", 'principal_components'"principal_components""principal_components""principal_components""principal_components"

NumComponentsNumComponentsNumComponentsnumComponentsnum_components (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Preprocessing parameter: Number of transformed features (ignored for PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'none'"none""none""none""none" and PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'normalization'"normalization""normalization""normalization""normalization").

Default: 10

Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100

Restriction: NumComponents >= 1

RandSeedRandSeedRandSeedrandSeedrand_seed (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Seed value of the random number generator that is used to initialize the GMM with random values.

Default: 42

GMMHandleGMMHandleGMMHandleGMMHandlegmmhandle (output_control)  class_gmm HClassGmm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

GMM handle.

Example (HDevelop)

* Classification with Gaussian Mixture Models
create_class_gmm (NumDim , NumClasses, [1,5], 'full', 'none',\
                  NumComponents, 42, GMMHandle)
* Add the training data
for J := 0 to NumData-1 by 1
    * Features := [...]
    * ClassID := [...]
    add_sample_class_gmm (GMMHandle, Features, ClassID, Randomize)
endfor
* Train the GMM
train_class_gmm (GMMHandle, 100, 0.001, 'training', 0.0001, Centers, Iter)
* Classify unknown data in 'Features'
classify_class_gmm (GMMHandle, Features, 1, ID, Prob, Density, KSigmaProb)

Result

If the parameters are valid, the operator create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmcreate_class_gmm returns the value 2 ( H_MSG_TRUE) . If necessary an exception is raised.

Possible Successors

add_sample_class_gmmadd_sample_class_gmmAddSampleClassGmmAddSampleClassGmmadd_sample_class_gmm, add_samples_image_class_gmmadd_samples_image_class_gmmAddSamplesImageClassGmmAddSamplesImageClassGmmadd_samples_image_class_gmm

Alternatives

create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp, create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmcreate_class_svm

See also

clear_class_gmmclear_class_gmmClearClassGmmClearClassGmmclear_class_gmm, train_class_gmmtrain_class_gmmTrainClassGmmTrainClassGmmtrain_class_gmm, classify_class_gmmclassify_class_gmmClassifyClassGmmClassifyClassGmmclassify_class_gmm, evaluate_class_gmmevaluate_class_gmmEvaluateClassGmmEvaluateClassGmmevaluate_class_gmm, classify_image_class_gmmclassify_image_class_gmmClassifyImageClassGmmClassifyImageClassGmmclassify_image_class_gmm

References

Christopher M. Bishop: “Neural Networks for Pattern Recognition”; Oxford University Press, Oxford; 1995.
Mario A.T. Figueiredo: “Unsupervised Learning of Finite Mixture Models”; IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3; March 2002.

Module

Foundation