Operator Reference

create_class_svmT_create_class_svmCreateClassSvmCreateClassSvmcreate_class_svm (Operator)

create_class_svmT_create_class_svmCreateClassSvmCreateClassSvmcreate_class_svm — Create a support vector machine for pattern classification.

Signature

Herror T_create_class_svm(const Htuple NumFeatures, const Htuple KernelType, const Htuple KernelParam, const Htuple Nu, const Htuple NumClasses, const Htuple Mode, const Htuple Preprocessing, const Htuple NumComponents, Htuple* SVMHandle)

void CreateClassSvm(const HTuple& NumFeatures, const HTuple& KernelType, const HTuple& KernelParam, const HTuple& Nu, const HTuple& NumClasses, const HTuple& Mode, const HTuple& Preprocessing, const HTuple& NumComponents, HTuple* SVMHandle)

void HClassSvm::HClassSvm(Hlong NumFeatures, const HString& KernelType, double KernelParam, double Nu, Hlong NumClasses, const HString& Mode, const HString& Preprocessing, Hlong NumComponents)

void HClassSvm::HClassSvm(Hlong NumFeatures, const char* KernelType, double KernelParam, double Nu, Hlong NumClasses, const char* Mode, const char* Preprocessing, Hlong NumComponents)

void HClassSvm::HClassSvm(Hlong NumFeatures, const wchar_t* KernelType, double KernelParam, double Nu, Hlong NumClasses, const wchar_t* Mode, const wchar_t* Preprocessing, Hlong NumComponents)   ( Windows only)

void HClassSvm::CreateClassSvm(Hlong NumFeatures, const HString& KernelType, double KernelParam, double Nu, Hlong NumClasses, const HString& Mode, const HString& Preprocessing, Hlong NumComponents)

void HClassSvm::CreateClassSvm(Hlong NumFeatures, const char* KernelType, double KernelParam, double Nu, Hlong NumClasses, const char* Mode, const char* Preprocessing, Hlong NumComponents)

void HClassSvm::CreateClassSvm(Hlong NumFeatures, const wchar_t* KernelType, double KernelParam, double Nu, Hlong NumClasses, const wchar_t* Mode, const wchar_t* Preprocessing, Hlong NumComponents)   ( Windows only)

static void HOperatorSet.CreateClassSvm(HTuple numFeatures, HTuple kernelType, HTuple kernelParam, HTuple nu, HTuple numClasses, HTuple mode, HTuple preprocessing, HTuple numComponents, out HTuple SVMHandle)

public HClassSvm(int numFeatures, string kernelType, double kernelParam, double nu, int numClasses, string mode, string preprocessing, int numComponents)

void HClassSvm.CreateClassSvm(int numFeatures, string kernelType, double kernelParam, double nu, int numClasses, string mode, string preprocessing, int numComponents)

def create_class_svm(num_features: int, kernel_type: str, kernel_param: float, nu: float, num_classes: int, mode: str, preprocessing: str, num_components: int) -> HHandle

Description

create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmcreate_class_svm creates a support vector machine that can be used for pattern classification. The dimension of the patterns to be classified is specified in NumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features, the number of different classes in NumClassesNumClassesNumClassesnumClassesnum_classes.

For a binary classification problem in which the classes are linearly separable the SVM algorithm selects data vectors from the training set that are utilized to construct the optimal separating hyperplane between different classes. This hyperplane is optimal in the sense that the margin between the convex hulls of the different classes is maximized. The training patterns that are located at the margin define the hyperplane and are called support vectors (SV).

Classification of a feature vector z is performed with the following formula: Here, are the support vectors, encodes their class membership ( ) and the weight coefficients. The distance of the hyperplane to the origin is b. The and b are determined during training with train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmtrain_class_svm. Note that only a subset of the original training set ( : number of support vectors) is necessary for the definition of the decision boundary and therefore data vectors that are not support vectors are discarded. The classification speed depends on the evaluation of the dot product between support vectors and the feature vector to be classified, and hence depends on the length of the feature vector and the number of support vectors.

For classification problems in which the classes are not linearly separable the algorithm is extended in two ways. First, during training a certain amount of errors (overlaps) is compensated with the use of slack variables. This means that the are upper bounded by a regularization constant. To enable an intuitive control of the amount of training errors, the Nu-SVM version of the training algorithm is used. Here, the regularization parameter NuNuNununu is an asymptotic upper bound on the number of training errors and an asymptotic lower bound on the number of support vectors. As a rule of thumb, the parameter NuNuNununu should be set to the prior expectation of the application's specific error ratio, e.g., 0.01 (corresponding to a maximum training error of 1%). Please note that a too big value for NuNuNununu might lead to an infeasible training problem, i.e., the SVM cannot be trained correctly (see train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmtrain_class_svm for more details). Since this can only be determined during training, an exception can only be raised there. In this case, a new SVM with NuNuNununu chosen smaller must be created.

Second, because the above SVM exclusively calculates dot products between the feature vectors, it is possible to incorporate a kernel function into the training and testing algorithm. This means that the dot products are substituted by a kernel function, which implicitly performs the dot product in a higher dimensional feature space. Given the appropriate kernel transformation, an originally not linearly separable classification task becomes linearly separable in the higher dimensional feature space.

Different kernel functions can be selected with the parameter KernelTypeKernelTypeKernelTypekernelTypekernel_type. For KernelTypeKernelTypeKernelTypekernelTypekernel_type = 'linear'"linear""linear""linear""linear" the dot product, as specified in the above formula is calculated. This kernel should solely be used for linearly or nearly linearly separable classification tasks. The parameter KernelParamKernelParamKernelParamkernelParamkernel_param is ignored here.

The radial basis function (RBF) KernelTypeKernelTypeKernelTypekernelTypekernel_type = 'rbf'"rbf""rbf""rbf""rbf" is the best choice for a kernel function because it achieves good results for many classification tasks. It is defined as: Here, the parameter KernelParamKernelParamKernelParamkernelParamkernel_param is used to select . The intuitive meaning of is the amount of influence of a support vector upon its surroundings. A big value of (small influence on the surroundings) means that each training vector becomes a support vector. The training algorithm learns the training data “by heart”, but lacks any generalization ability (over-fitting). Additionally, the training/classification times grow significantly. A too small value for (big influence on the surroundings) leads to few support vectors defining the separating hyperplane (under-fitting). One typical strategy is to select a small -NuNuNununu pair and consecutively increase the values as long as the recognition rate increases.

With KernelTypeKernelTypeKernelTypekernelTypekernel_type = 'polynomial_homogeneous'"polynomial_homogeneous""polynomial_homogeneous""polynomial_homogeneous""polynomial_homogeneous" or 'polynomial_inhomogeneous'"polynomial_inhomogeneous""polynomial_inhomogeneous""polynomial_inhomogeneous""polynomial_inhomogeneous", polynomial kernels can be selected. They are defined in the following way: The degree of the polynomial kernel must be set with KernelParamKernelParamKernelParamkernelParamkernel_param. Please note that a too high degree polynomial (d > 10) might result in numerical problems.

As a rule of thumb, the RBF kernel provides a good choice for most of the classification problems and should therefore be used in almost all cases. Nevertheless, the linear and polynomial kernels might be better suited for certain applications and can be tested for comparison. Please note that the novelty-detection ModeModeModemodemode and the operator reduce_class_svmreduce_class_svmReduceClassSvmReduceClassSvmreduce_class_svm are provided only for the RBF kernel.

ModeModeModemodemode specifies the general classification task, which is either how to break down a multi-class decision problem to binary sub-cases or whether to use a special classifier mode called 'novelty-detection'"novelty-detection""novelty-detection""novelty-detection""novelty-detection". ModeModeModemodemode = 'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all" creates a classifier where each class is compared to the rest of the training data. During testing the class with the largest output (see the classification formula without sign) is chosen. ModeModeModemodemode = 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one" creates a binary classifier between each single class. During testing a vote is cast and the class with the majority of the votes is selected. The optimal ModeModeModemodemode for multi-class classification depends on the number of classes. Given n classes 'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all" creates n classifiers, whereas 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one" creates n(n-1)/2. Note that for a binary decision task 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one" would create exactly one, whereas 'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all" unnecessarily creates two symmetric classifiers. For few classes (approximately up to 10) 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one" is faster for training and testing, because the sub-classifier all consist of fewer training data and result in overall fewer support vectors. In case of many classes 'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all" is preferable, because 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one" generates a prohibitively large amount of sub-classifiers, as their number increases to the square of the number of classes.

A special case of classification is ModeModeModemodemode = 'novelty-detection'"novelty-detection""novelty-detection""novelty-detection""novelty-detection", where the test data is classified only with regard to membership to the training data, i.e., NumClassesNumClassesNumClassesnumClassesnum_classes must be set to 1. The separating hyperplane lies around the training data and thereby implicitly divides the training data from the rejection class. The advantage is that the rejection class is not defined explicitly, which is difficult to do in certain applications like texture classification. The resulting support vectors are all lying at the border. With the parameter NuNuNununu, the ratio of outliers in the training data set is specified. Note, that when classifying in the 'novelty-detection'"novelty-detection""novelty-detection""novelty-detection""novelty-detection" mode, the class of the training data is returned with index 1 and the rejection class is returned with index 0. Thus, the first class serves as rejection class. In contrast, when using the MLP classifier, the last class serves as rejection class by default.

The parameters PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing and NumComponentsNumComponentsNumComponentsnumComponentsnum_components can be used to specify a preprocessing of the feature vectors. For PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'none'"none""none""none""none", the feature vectors are passed unaltered to the SVM. NumComponentsNumComponentsNumComponentsnumComponentsnum_components is ignored in this case.

For all other values of PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing, the training data set is used to compute a transformation of the feature vectors during the training as well as later in the classification.

For PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'normalization'"normalization""normalization""normalization""normalization", the feature vectors are normalized. In case of a polynomial kernel, the minimum and maximum value of the training data set is transformed to -1 and +1. In case of the RBF kernel, the data is normalized by subtracting the mean of the training vectors and dividing the result by the standard deviation of the individual components of the training vectors. Hence, the transformed feature vectors have a mean of 0 and a standard deviation of 1. The normalization does not change the length of the feature vector. NumComponentsNumComponentsNumComponentsnumComponentsnum_components is ignored in this case. This transformation can be used if the mean and standard deviation of the feature vectors differs substantially from 0 and 1, respectively, or for data in which the components of the feature vectors are measured in different units (e.g., if some of the data are gray value features and some are region features, or if region features are mixed, e.g., 'circularity' (unit: scalar) and 'area' (unit: pixel squared)). The normalization transformation should be performed in general, because it increases the numerical stability during training/testing.

For PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'principal_components'"principal_components""principal_components""principal_components""principal_components", a principal component analysis (PCA) is performed. First, the feature vectors are normalized (see above). Then, an orthogonal transformation (a rotation in the feature space) that decorrelates the training vectors is computed. After the transformation, the mean of the training vectors is 0 and the covariance matrix of the training vectors is a diagonal matrix. The transformation is chosen such that the transformed features that contain the most variation is contained in the first components of the transformed feature vector. With this, it is possible to omit the transformed features in the last components of the feature vector, which typically are mainly influenced by noise, without losing a large amount of information. The parameter NumComponentsNumComponentsNumComponentsnumComponentsnum_components can be used to determine how many of the transformed feature vector components should be used. Up to NumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features components can be selected. The operator get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm can be used to determine how much information each transformed component contains. Hence, it aids the selection of NumComponentsNumComponentsNumComponentsnumComponentsnum_components. Like data normalization, this transformation can be used if the mean and standard deviation of the feature vectors differs substantially from 0 and 1, respectively, or for feature vectors in which the components of the data are measured in different units. In addition, this transformation is useful if it can be expected that the features are highly correlated. Please note that the RBF kernel is very robust against the dimensionality reduction performed by PCA and should therefore be the first choice when speeding up the classification time.

The transformation specified by PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates" first normalizes the training vectors and then decorrelates the training vectors on average over all classes. At the same time, the transformation maximally separates the mean values of the individual classes. As for PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'principal_components'"principal_components""principal_components""principal_components""principal_components", the transformed components are sorted by information content, and hence transformed components with little information content can be omitted. For canonical variates, up to min(NumClassesNumClassesNumClassesnumClassesnum_classes-1, NumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features) components can be selected. Also in this case, the information content of the transformed components can be determined with get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm. Like principal component analysis, canonical variates can be used to reduce the amount of data without losing a large amount of information, while additionally optimizing the separability of the classes after the data reduction. The computation of the canonical variates is also called linear discriminant analysis.

For the last two types of transformations ('principal_components'"principal_components""principal_components""principal_components""principal_components" and 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates"), the length of input data of the SVM is determined by NumComponentsNumComponentsNumComponentsnumComponentsnum_components, whereas NumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features determines the dimensionality of the input data (i.e., the length of the untransformed feature vector). Hence, by using one of these two transformations, the size of the SVM with respect to data length is reduced, leading to shorter training/classification times by the SVM.

After the SVM has been created with create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmcreate_class_svm, typically training samples are added to the SVM by repeatedly calling add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm or read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm. After this, the SVM is typically trained using train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmtrain_class_svm. Hereafter, the SVM can be saved using write_class_svmwrite_class_svmWriteClassSvmWriteClassSvmwrite_class_svm. Alternatively, the SVM can be used immediately after training to classify data using classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmclassify_class_svm.

A comparison of the SVM and the multi-layer perceptron (MLP) (see create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp) typically shows that SVMs are generally faster at training, especially for huge training sets, and achieve slightly better recognition rates than MLPs. The MLP is faster at classification and should therefore be preferred in time critical applications. Please note that this guideline assumes optimal tuning of the parameters.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Processed without parallelization.

This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even though the handle is used as an input parameter by those operators.

Parameters

NumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of input variables (features) of the SVM.

Default: 10

Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100

Restriction: NumFeatures >= 1

KernelTypeKernelTypeKernelTypekernelTypekernel_type (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

The kernel type.

Default: 'rbf' "rbf" "rbf" "rbf" "rbf"

List of values: 'linear'"linear""linear""linear""linear", 'polynomial_homogeneous'"polynomial_homogeneous""polynomial_homogeneous""polynomial_homogeneous""polynomial_homogeneous", 'polynomial_inhomogeneous'"polynomial_inhomogeneous""polynomial_inhomogeneous""polynomial_inhomogeneous""polynomial_inhomogeneous", 'rbf'"rbf""rbf""rbf""rbf"

KernelParamKernelParamKernelParamkernelParamkernel_param (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Additional parameter for the kernel function. In case of RBF kernel the value for . For polynomial kernel the degree

Default: 0.02

Suggested values: 0.01, 0.02, 0.05, 0.1, 0.5

NuNuNununu (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Regularization constant of the SVM.

Default: 0.05

Suggested values: 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3

Restriction: Nu > 0.0 && Nu < 1.0

NumClassesNumClassesNumClassesnumClassesnum_classes (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of classes.

Default: 5

Suggested values: 2, 3, 4, 5, 6, 7, 8, 9, 10

Restriction: NumClasses >= 1

ModeModeModemodemode (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

The mode of the SVM.

Default: 'one-versus-one' "one-versus-one" "one-versus-one" "one-versus-one" "one-versus-one"

List of values: 'novelty-detection'"novelty-detection""novelty-detection""novelty-detection""novelty-detection", 'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all", 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one"

PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Type of preprocessing used to transform the feature vectors.

Default: 'normalization' "normalization" "normalization" "normalization" "normalization"

List of values: 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates", 'none'"none""none""none""none", 'normalization'"normalization""normalization""normalization""normalization", 'principal_components'"principal_components""principal_components""principal_components""principal_components"

NumComponentsNumComponentsNumComponentsnumComponentsnum_components (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Preprocessing parameter: Number of transformed features (ignored for PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'none'"none""none""none""none" and PreprocessingPreprocessingPreprocessingpreprocessingpreprocessing = 'normalization'"normalization""normalization""normalization""normalization").

Default: 10

Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100

Restriction: NumComponents >= 1

SVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (output_control)  class_svm HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

SVM handle.

Example (HDevelop)

create_class_svm (NumFeatures, 'rbf', 0.01, 0.01, NumClasses,\
                  'one-versus-all', 'normalization', NumFeatures,\
                  SVMHandle)
* Generate and add the training data
for J := 0 to NumData-1 by 1
    * Generate training features and classes
    * Data = [...]
    * Class = ...
    add_sample_class_svm (SVMHandle, Data, Class)
endfor
* Train the SVM
train_class_svm (SVMHandle, 0.001, 'default')
* Use the SVM to classify unknown data
for J := 0 to N-1 by 1
    * Extract features
    * Features = [...]
    classify_class_svm (SVMHandle, Features, 1, Class)
endfor

Result

If the parameters are valid the operator create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmcreate_class_svm returns the value 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

Possible Successors

add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm

Alternatives

read_dl_classifierread_dl_classifierReadDlClassifierReadDlClassifierread_dl_classifier, create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpcreate_class_mlp, create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmcreate_class_gmm

See also

clear_class_svmclear_class_svmClearClassSvmClearClassSvmclear_class_svm, train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmtrain_class_svm, classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmclassify_class_svm

References

Bernhard Schölkopf, Alexander J.Smola: “Learning with Kernels”; MIT Press, London; 1999.
John Shawe-Taylor, Nello Cristianini: “Kernel Methods for Pattern Analysis”; Cambridge University Press, Cambridge; 2004.

Module

Foundation