Operator Reference

inpainting_cedinpainting_cedInpaintingCedInpaintingCedinpainting_ced (Operator)

inpainting_cedinpainting_cedInpaintingCedInpaintingCedinpainting_ced — Perform an inpainting by coherence enhancing diffusion.

Signature

inpainting_ced(Image, Region : InpaintedImage : Sigma, Rho, Theta, Iterations : )

Herror inpainting_ced(const Hobject Image, const Hobject Region, Hobject* InpaintedImage, double Sigma, double Rho, double Theta, const Hlong Iterations)

Herror T_inpainting_ced(const Hobject Image, const Hobject Region, Hobject* InpaintedImage, const Htuple Sigma, const Htuple Rho, const Htuple Theta, const Htuple Iterations)

void InpaintingCed(const HObject& Image, const HObject& Region, HObject* InpaintedImage, const HTuple& Sigma, const HTuple& Rho, const HTuple& Theta, const HTuple& Iterations)

HImage HImage::InpaintingCed(const HRegion& Region, double Sigma, double Rho, double Theta, Hlong Iterations) const

static void HOperatorSet.InpaintingCed(HObject image, HObject region, out HObject inpaintedImage, HTuple sigma, HTuple rho, HTuple theta, HTuple iterations)

HImage HImage.InpaintingCed(HRegion region, double sigma, double rho, double theta, int iterations)

def inpainting_ced(image: HObject, region: HObject, sigma: float, rho: float, theta: float, iterations: int) -> HObject

Description

The operator inpainting_cedinpainting_cedInpaintingCedInpaintingCedinpainting_ced performs an anisotropic diffusion process on the region RegionRegionRegionregionregion of the input image ImageImageImageimageimage with the objective of completing discontinuous image edges diffusively by increasing the coherence of the image structures contained in ImageImageImageimageimage and without smoothing these edges perpendicular to their dominating direction. The mechanism is the same as in the operator coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff, which is based on a discretization of the anisotropic diffusion equation formulated by Weickert. With a 2x2 coefficient matrix G that depends on the gray values in ImageImageImageimageimage, this is an enhancement of the mean curvature flow or intrinsic heat equation on the gray value function u defined by the input image ImageImageImageimageimage at a time . The smoothing operator mean_curvature_flowmean_curvature_flowMeanCurvatureFlowMeanCurvatureFlowmean_curvature_flow is a direct application of the mean curvature flow equation. With the operator inpainting_mcfinpainting_mcfInpaintingMcfInpaintingMcfinpainting_mcf, it can also be used for image inpainting. The discrete diffusion equation is solved in IterationsIterationsIterationsiterationsiterations time steps of length ThetaThetaThetathetatheta, so that the output image InpaintedImageInpaintedImageInpaintedImageinpaintedImageinpainted_image contains the gray value function at the time .

To detect the image direction more robustly, in particular on noisy input data, an additional isotropic smoothing step can precede the computation of the gray value gradients. The parameter SigmaSigmaSigmasigmasigma determines the magnitude of the smoothing by means of the standard deviation of a corresponding Gaussian convolution kernel, as used in the operator isotropic_diffusionisotropic_diffusionIsotropicDiffusionIsotropicDiffusionisotropic_diffusion for isotropic image smoothing.

Similar to the operator inpainting_mcfinpainting_mcfInpaintingMcfInpaintingMcfinpainting_mcf, the structure of the image data in RegionRegionRegionregionregion is simplified by smoothing the level lines of ImageImageImageimageimage. By this, image errors and unwanted objects can be removed from the image, while the edges in the neighborhood are extended continuously. This procedure is called image inpainting. The objective is to introduce a minimum amount of artifacts or smoothing effects, so that the image manipulation is least visible to a human beholder.

While the matrix G is given by in the case of the operator inpainting_mcfinpainting_mcfInpaintingMcfInpaintingMcfinpainting_mcf, where I denotes the unit matrix, is again smoothed componentwise by a Gaussian filter of standard deviation RhoRhoRhorhorho for coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff. Then, the final coefficient matrix is constructed from the eigenvalues and eigenvectors of the resulting intermediate matrix, where the functions were determined empirically and taken from the publication of Weickert.

Hence, the diffusion direction in mean_curvature_flowmean_curvature_flowMeanCurvatureFlowMeanCurvatureFlowmean_curvature_flow is only determined by the local direction of the gray value gradient, while considers the macroscopic structure of the image objects on the scale RhoRhoRhorhorho and the magnitude of the diffusion in coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff depends on how well this structure is defined.

To achieve the highest possible consistency of the newly created edges with the image data from the neighborhood, the gray values are not mirrored at the border of RegionRegionRegionregionregion to compute the convolution with the smoothing filter mask of scale RhoRhoRhorhorho on the pixels close to the border, although this would be the common approach for filter operators. Instead, the existence of gray values on a band of width ceil(3.1*Rho)+2 pixels around RegionRegionRegionregionregion is presumed and these values are used in the convolution. This means that RegionRegionRegionregionregion must keep this much distance to the border of the image matrix ImageImageImageimageimage. By involving the gray values and directional information from this extended area, it can be achieved that the continuation of the edges is not only continuous, but also smooth, which means without kinks. Please note that the inpainting progress is restricted to those pixels that are included in the ROI of the input image ImageImageImageimageimage. If the ROI does not include the entire region RegionRegionRegionregionregion, a band around the intersection of RegionRegionRegionregionregion and the ROI is used to define the boundary values.

To decrease the number of iterations required for attaining a satisfactory result, it may be useful to initialize the gray value matrix in RegionRegionRegionregionregion with the harmonic interpolant, a continuous function of minimal curvature, by applying the operator harmonic_interpolationharmonic_interpolationHarmonicInterpolationHarmonicInterpolationharmonic_interpolation to ImageImageImageimageimage before calling inpainting_cedinpainting_cedInpaintingCedInpaintingCedinpainting_ced.

Attention

Note that filter operators may return unexpected results if an image with a reduced domain is used as input. Please refer to the chapter Filters.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Automatically parallelized on tuple level.

Parameters

ImageImageImageimageimage (input_object)  (multichannel-)image(-array) objectHImageHObjectHObjectHobject (byte / uint2 / real)

Input image.

RegionRegionRegionregionregion (input_object)  region objectHRegionHObjectHObjectHobject

Inpainting region.

InpaintedImageInpaintedImageInpaintedImageinpaintedImageinpainted_image (output_object)  image(-array) objectHImageHObjectHObjectHobject * (byte / uint2 / real)

Output image.

SigmaSigmaSigmasigmasigma (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Smoothing for derivative operator.

Default: 0.5

Suggested values: 0.0, 0.1, 0.5, 1.0

Restriction: Sigma >= 0

RhoRhoRhorhorho (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Smoothing for diffusion coefficients.

Default: 3.0

Suggested values: 0.0, 1.0, 3.0, 5.0, 10.0, 30.0

Restriction: Rho >= 0

ThetaThetaThetathetatheta (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Time step.

Default: 0.5

Suggested values: 0.1, 0.2, 0.3, 0.4, 0.5

Restriction: 0 < Theta <= 0.5

IterationsIterationsIterationsiterationsiterations (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of iterations.

Default: 10

Suggested values: 1, 5, 10, 20, 50, 100, 500

Restriction: Iterations >= 1

Example (HDevelop)

read_image (Image, 'fabrik')
gen_rectangle1 (Rectangle, 270, 180, 320, 230)
harmonic_interpolation (Image, Rectangle, InpaintedImage, 0.01)
inpainting_ced (InpaintedImage, Rectangle, InpaintedImage2, \
                0.5, 3.0, 0.5, 1000)
dev_display(InpaintedImage2)

Alternatives

harmonic_interpolationharmonic_interpolationHarmonicInterpolationHarmonicInterpolationharmonic_interpolation, inpainting_ctinpainting_ctInpaintingCtInpaintingCtinpainting_ct, inpainting_anisoinpainting_anisoInpaintingAnisoInpaintingAnisoinpainting_aniso, inpainting_mcfinpainting_mcfInpaintingMcfInpaintingMcfinpainting_mcf, inpainting_textureinpainting_textureInpaintingTextureInpaintingTextureinpainting_texture

References

J. Weickert, V. Hlavac, R. Sara; “Multiscale texture enhancement”; Computer analysis of images and patterns, Lecture Notes in Computer Science, Vol. 970, pp. 230-237; Springer, Berlin; 1995.
J. Weickert, B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever; “A review of nonlinear diffusion filtering”; Scale-Space Theory in Computer Vision, Lecture Notes in Comp. Science, Vol. 1252, pp. 3-28; Springer, Berlin; 1997.

Module

Foundation