Operator Reference
classify_image_class_lut (Operator)
classify_image_class_lut
— Classify a byte image using a look-up table.
Signature
classify_image_class_lut(Image : ClassRegions : ClassLUTHandle : )
Description
classify_image_class_lut
performs a pixel classification on a
multi-channel byte Image
using a look-up table (LUT)
ClassLUTHandle
. The operator can replace
classify_image_class_gmm
, classify_image_class_knn
,
classify_image_class_mlp
and classify_image_class_svm
.
The classification gets a major speed-up,
because the estimation of the class in every image point is no longer
necessary since every possible response of the GMM, KNN, MLP or SVM,
respectively, is stored in the LUT. This LUT classifier must be created
with the trained classifier in create_class_lut_gmm
,
create_class_lut_knn
, create_class_lut_mlp
or
create_class_lut_svm
, respectively, before
classify_image_class_lut
can be used. For the classification the
parameters in create_class_gmm
, create_class_knn
,
create_class_mlp
and create_class_svm
, respectively,
are important: The byte Image
must have the same number of channels
as specified by NumInput
, NumFeatures
or NumDim
,
respectively. As result of the pixel classification
classify_image_class_lut
passes NumOutput
or
NumClasses
regions in ClassRegions
, respectively
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Automatically parallelized on internal data level.
Parameters
Image
(input_object) (multichannel-)image →
object (byte)
Input image.
ClassRegions
(output_object) region-array →
object
Segmented classes.
ClassLUTHandle
(input_control) class_lut →
(handle)
Handle of the LUT classifier.
Example (HDevelop)
read_image (Image, 'patras') gen_rectangle1 (Sea, 10, 10, 120, 270) gen_rectangle2 (Deck, [170,400], [350,375], [-0.56192,-0.75139], \ [64,104], [26,11]) union1 (Deck, Deck) gen_rectangle1 (Walls, 355, 623, 420, 702) gen_rectangle2 (Chimney, 286, 623, -0.56192, 64, 33) concat_obj (Sea, Deck, Classes) concat_obj (Classes, Walls, Classes) concat_obj (Classes, Chimney, Classes) * * create MLP classifier and train it with sample classes create_class_mlp (3, 3, 4, 'softmax', 'principal_components', 3, \ 42, MLPHandle) add_samples_image_class_mlp (Image, Classes, MLPHandle) train_class_mlp (MLPHandle, 200, 1, 0.01, Error, ErrorLog) * * create the LUT classifier create_class_lut_mlp (MLPHandle, [], [], ClassLUTHandle) * * classify the image with the LUT classify_image_class_lut (Image, ClassRegions, ClassLUTHandle)
Result
If the parameters are valid, the operator
classify_image_class_lut
returns the value 2 (
H_MSG_TRUE)
. If
necessary an exception is raised.
Possible Predecessors
create_class_lut_gmm
,
create_class_lut_knn
,
create_class_lut_mlp
,
create_class_lut_svm
Alternatives
classify_image_class_gmm
,
classify_image_class_knn
,
classify_image_class_mlp
,
classify_image_class_svm
See also
create_class_lut_gmm
,
create_class_lut_knn
,
create_class_lut_mlp
,
create_class_lut_svm
,
create_class_lut_gmm
Module
Foundation