Operator Reference

find_planar_uncalib_deformable_modelT_find_planar_uncalib_deformable_modelFindPlanarUncalibDeformableModelFindPlanarUncalibDeformableModelfind_planar_uncalib_deformable_model (Operator)

find_planar_uncalib_deformable_modelT_find_planar_uncalib_deformable_modelFindPlanarUncalibDeformableModelFindPlanarUncalibDeformableModelfind_planar_uncalib_deformable_model — Find the best matches of a planar projective invariant deformable model in an image.

Signature

Herror T_find_planar_uncalib_deformable_model(const Hobject Image, const Htuple ModelID, const Htuple AngleStart, const Htuple AngleExtent, const Htuple ScaleRMin, const Htuple ScaleRMax, const Htuple ScaleCMin, const Htuple ScaleCMax, const Htuple MinScore, const Htuple NumMatches, const Htuple MaxOverlap, const Htuple NumLevels, const Htuple Greediness, const Htuple GenParamName, const Htuple GenParamValue, Htuple* HomMat2D, Htuple* Score)

void FindPlanarUncalibDeformableModel(const HObject& Image, const HTuple& ModelID, const HTuple& AngleStart, const HTuple& AngleExtent, const HTuple& ScaleRMin, const HTuple& ScaleRMax, const HTuple& ScaleCMin, const HTuple& ScaleCMax, const HTuple& MinScore, const HTuple& NumMatches, const HTuple& MaxOverlap, const HTuple& NumLevels, const HTuple& Greediness, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* HomMat2D, HTuple* Score)

HHomMat2DArray HDeformableModel::FindPlanarUncalibDeformableModel(const HImage& Image, double AngleStart, double AngleExtent, double ScaleRMin, double ScaleRMax, double ScaleCMin, double ScaleCMax, double MinScore, Hlong NumMatches, double MaxOverlap, const HTuple& NumLevels, double Greediness, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score) const

HHomMat2D HDeformableModel::FindPlanarUncalibDeformableModel(const HImage& Image, double AngleStart, double AngleExtent, double ScaleRMin, double ScaleRMax, double ScaleCMin, double ScaleCMax, double MinScore, Hlong NumMatches, double MaxOverlap, Hlong NumLevels, double Greediness, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score) const

HHomMat2DArray HImage::FindPlanarUncalibDeformableModel(const HDeformableModel& ModelID, double AngleStart, double AngleExtent, double ScaleRMin, double ScaleRMax, double ScaleCMin, double ScaleCMax, double MinScore, Hlong NumMatches, double MaxOverlap, const HTuple& NumLevels, double Greediness, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score) const

HHomMat2D HImage::FindPlanarUncalibDeformableModel(const HDeformableModel& ModelID, double AngleStart, double AngleExtent, double ScaleRMin, double ScaleRMax, double ScaleCMin, double ScaleCMax, double MinScore, Hlong NumMatches, double MaxOverlap, Hlong NumLevels, double Greediness, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score) const

static void HOperatorSet.FindPlanarUncalibDeformableModel(HObject image, HTuple modelID, HTuple angleStart, HTuple angleExtent, HTuple scaleRMin, HTuple scaleRMax, HTuple scaleCMin, HTuple scaleCMax, HTuple minScore, HTuple numMatches, HTuple maxOverlap, HTuple numLevels, HTuple greediness, HTuple genParamName, HTuple genParamValue, out HTuple homMat2D, out HTuple score)

HHomMat2D[] HDeformableModel.FindPlanarUncalibDeformableModel(HImage image, double angleStart, double angleExtent, double scaleRMin, double scaleRMax, double scaleCMin, double scaleCMax, double minScore, int numMatches, double maxOverlap, HTuple numLevels, double greediness, HTuple genParamName, HTuple genParamValue, out HTuple score)

HHomMat2D HDeformableModel.FindPlanarUncalibDeformableModel(HImage image, double angleStart, double angleExtent, double scaleRMin, double scaleRMax, double scaleCMin, double scaleCMax, double minScore, int numMatches, double maxOverlap, int numLevels, double greediness, HTuple genParamName, HTuple genParamValue, out HTuple score)

HHomMat2D[] HImage.FindPlanarUncalibDeformableModel(HDeformableModel modelID, double angleStart, double angleExtent, double scaleRMin, double scaleRMax, double scaleCMin, double scaleCMax, double minScore, int numMatches, double maxOverlap, HTuple numLevels, double greediness, HTuple genParamName, HTuple genParamValue, out HTuple score)

HHomMat2D HImage.FindPlanarUncalibDeformableModel(HDeformableModel modelID, double angleStart, double angleExtent, double scaleRMin, double scaleRMax, double scaleCMin, double scaleCMax, double minScore, int numMatches, double maxOverlap, int numLevels, double greediness, HTuple genParamName, HTuple genParamValue, out HTuple score)

def find_planar_uncalib_deformable_model(image: HObject, model_id: HHandle, angle_start: float, angle_extent: float, scale_rmin: float, scale_rmax: float, scale_cmin: float, scale_cmax: float, min_score: float, num_matches: int, max_overlap: float, num_levels: MaybeSequence[int], greediness: float, gen_param_name: Sequence[str], gen_param_value: Sequence[Union[int, float, str]]) -> Tuple[Sequence[float], Sequence[float]]

Description

The operator find_planar_uncalib_deformable_modelfind_planar_uncalib_deformable_modelFindPlanarUncalibDeformableModelFindPlanarUncalibDeformableModelfind_planar_uncalib_deformable_model finds the best NumMatchesNumMatchesNumMatchesnumMatchesnum_matches instances of the perspectively distorted deformable model ModelIDModelIDModelIDmodelIDmodel_id in the input image ImageImageImageimageimage. The model must have been created previously by calling create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model or read_deformable_modelread_deformable_modelReadDeformableModelReadDeformableModelread_deformable_model.

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d determines the projective transformation (homography), which describes the position of the found matches. In case several objects are found, the different homographies are concatenated. Then, a single homography can be extracted using tuple_select_range(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)tuple_select_range(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)TupleSelectRange(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)TupleSelectRange(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)tuple_select_range(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D). The different results are sorted according to their ScoreScoreScorescorescore in descending order.

The row and column coordinates of the origin of the deformable model within the search image can be determined calling projective_trans_pixel(HomMat2D,0,0,Row,Column)projective_trans_pixel(HomMat2D,0,0,Row,Column)ProjectiveTransPixel(HomMat2D,0,0,Row,Column)ProjectiveTransPixel(HomMat2D,0,0,Row,Column)projective_trans_pixel(HomMat2D,0,0,Row,Column). Usually the origin of the model is the center of gravity of the image region used to create the deformable model calling create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model. The origin can be modified using set_deformable_model_originset_deformable_model_originSetDeformableModelOriginSetDeformableModelOriginset_deformable_model_origin.

The model contours of found instances can be visualized using projective_trans_contour_xldprojective_trans_contour_xldProjectiveTransContourXldProjectiveTransContourXldprojective_trans_contour_xld with the HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d and the original model contour, which has been extracted previously using get_deformable_model_contoursget_deformable_model_contoursGetDeformableModelContoursGetDeformableModelContoursget_deformable_model_contours.

The ScoreScoreScorescorescore is a number between 0 and 1 and may indicate how much of the model is visible within the image.

Example: Half of the model is occluded in the search image. As a result, the ScoreScoreScorescorescore of this match can not exceed 0.5.

Input parameters in detail

ImageImageImageimageimage and its domain:

The domain of the image ImageImageImageimageimage determines the search space for the reference point of the model, i.e., for the center of gravity of the domain (region) of the image that was used to create the deformable model with create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model. A different origin set with set_deformable_model_originset_deformable_model_originSetDeformableModelOriginSetDeformableModelOriginset_deformable_model_origin is not taken into account. The model is searched within those points of the domain of the image, in which the model lies completely within the image. This means that the model will not be found if it extends beyond the borders of the image, even if it would achieve a score greater than MinScoreMinScoreMinScoreminScoremin_score (see below). Note that, if for a certain pyramid level the model touches the image border, it might not be found even if it lies completely within the original image. As a rule of thumb, the model might not be found if its distance to an image border falls below . This behavior can be changed with set_system('border_shape_models','true')set_system("border_shape_models","true")SetSystem("border_shape_models","true")SetSystem("border_shape_models","true")set_system("border_shape_models","true"), which will cause models that extend beyond the image border to be found if they achieve a score greater than MinScoreMinScoreMinScoreminScoremin_score. Here, points lying outside the image are regarded as being occluded, i.e., they lower the score. It should be noted that the runtime of the search will increase in this mode. Note further, that in rare cases, which occur typically only for artificial images, the model might not be found also if for certain pyramid levels the model touches the border of the reduced domain. Then, it may help to enlarge the reduced domain by using, e.g., dilation_circledilation_circleDilationCircleDilationCircledilation_circle.

Angle and Scale parameters:

The parameters AngleStartAngleStartAngleStartangleStartangle_start, AngleExtentAngleExtentAngleExtentangleExtentangle_extent, ScaleRMinScaleRMinScaleRMinscaleRMinscale_rmin, ScaleRMaxScaleRMaxScaleRMaxscaleRMaxscale_rmax, ScaleCMinScaleCMinScaleCMinscaleCMinscale_cmin and ScaleCMaxScaleCMaxScaleCMaxscaleCMaxscale_cmax are used to specify a basic range of up to an anisotropic transformation that is exhaustively searched on the top level of the image pyramid. The parameters AngleStartAngleStartAngleStartangleStartangle_start and AngleExtentAngleExtentAngleExtentangleExtentangle_extent determine the range of possible rotations in which the model is exhaustively searched. ScaleRMinScaleRMinScaleRMinscaleRMinscale_rmin, ScaleRMaxScaleRMaxScaleRMaxscaleRMaxscale_rmax, ScaleCMinScaleCMinScaleCMinscaleCMinscale_cmin, and ScaleCMaxScaleCMaxScaleCMaxscaleCMaxscale_cmax determine the range of possible anisotropic scales that are exhaustively searched in the image. A scale of 1 in both scale factors corresponds to the original size of the model.

The operator find_planar_uncalib_deformable_modelfind_planar_uncalib_deformable_modelFindPlanarUncalibDeformableModelFindPlanarUncalibDeformableModelfind_planar_uncalib_deformable_model may find objects outside this range, e.g., when the object is perspectively distorted. Hence, the range parameters are a kind of suggestion for the search algorithm. Starting from this, certain models in a wider range of transformations can be detected, depending on the used pyramid levels, but also on the model/image content. It is important to note that, e.g., small scale changes can be tolerated without the need to specify a scale range, leading to faster execution times.

Often, it is not necessary to use an anisotropic scaling to find the object on the top level of the pyramid. In these cases, ScaleCMinScaleCMinScaleCMinscaleCMinscale_cmin and ScaleCMaxScaleCMaxScaleCMaxscaleCMaxscale_cmax should be set to 1.0. The search is then performed with isotropic scaling only, which is much faster. If the object should be detected despite severe perspective distortions anisotropic scaling is required. Here, ScaleRMinScaleRMinScaleRMinscaleRMinscale_rmin and ScaleRMaxScaleRMaxScaleRMaxscaleRMaxscale_rmax specify the anisotropic scaling in row, ScaleCMinScaleCMinScaleCMinscaleCMinscale_cmin and ScaleCMaxScaleCMaxScaleCMaxscaleCMaxscale_cmax in column direction.

Note that the transformations are treated internally such that the scalings are applied first, followed by the rotation. Therefore, the model should usually be aligned such that it appears horizontally or vertically in the model image.

Additionally, the operator find_planar_uncalib_deformable_modelfind_planar_uncalib_deformable_modelFindPlanarUncalibDeformableModelFindPlanarUncalibDeformableModelfind_planar_uncalib_deformable_model processes the parameters 'angle_step'"angle_step""angle_step""angle_step""angle_step", 'scale_r_step'"scale_r_step""scale_r_step""scale_r_step""scale_r_step" and 'scale_c_step'"scale_c_step""scale_c_step""scale_c_step""scale_c_step" which are set by the operator create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model during the model creation, or, as described below, can be set with the generic parameters GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value.

The parameter 'angle_step'"angle_step""angle_step""angle_step""angle_step" determines the step size within the selected range of angles. 'angle_step'"angle_step""angle_step""angle_step""angle_step" should be chosen based on the size of the object. Smaller models do not have many different discrete rotations in the image, and hence 'angle_step'"angle_step""angle_step""angle_step""angle_step" should be chosen larger for smaller models. If AngleExtentAngleExtentAngleExtentangleExtentangle_extent is not an integer multiple of 'angle_step'"angle_step""angle_step""angle_step""angle_step", 'angle_step'"angle_step""angle_step""angle_step""angle_step" is modified accordingly. The parameters 'scale_r_step'"scale_r_step""scale_r_step""scale_r_step""scale_r_step" and 'scale_c_step'"scale_c_step""scale_c_step""scale_c_step""scale_c_step" determine the step size within the selected range of scales. Like 'angle_step'"angle_step""angle_step""angle_step""angle_step", 'scale_r_step'"scale_r_step""scale_r_step""scale_r_step""scale_r_step" and 'scale_c_step'"scale_c_step""scale_c_step""scale_c_step""scale_c_step" should be chosen based on the size of the object. If the respective range of scales is not an integer multiple of 'scale_r_step'"scale_r_step""scale_r_step""scale_r_step""scale_r_step" and 'scale_c_step'"scale_c_step""scale_c_step""scale_c_step""scale_c_step", 'scale_r_step'"scale_r_step""scale_r_step""scale_r_step""scale_r_step" and 'scale_c_step'"scale_c_step""scale_c_step""scale_c_step""scale_c_step" are modified accordingly.

MinScoreMinScoreMinScoreminScoremin_score:

The parameter MinScoreMinScoreMinScoreminScoremin_score determines what score a potential match must at least have to be regarded as an instance of the model in the image. The larger MinScoreMinScoreMinScoreminScoremin_score is chosen, the faster the search is. If the model can be expected never to be occluded in the images, MinScoreMinScoreMinScoreminScoremin_score may be set as high as 0.8 or even 0.9.

NumMatchesNumMatchesNumMatchesnumMatchesnum_matches:

The maximum number of instances to be found can be determined with NumMatchesNumMatchesNumMatchesnumMatchesnum_matches. If more than NumMatchesNumMatchesNumMatchesnumMatchesnum_matches instances with a score greater than MinScoreMinScoreMinScoreminScoremin_score are found in the image, only the best NumMatchesNumMatchesNumMatchesnumMatchesnum_matches instances are returned. If fewer than NumMatchesNumMatchesNumMatchesnumMatchesnum_matches are found, only that number is returned, i.e., the parameter MinScoreMinScoreMinScoreminScoremin_score takes precedence over NumMatchesNumMatchesNumMatchesnumMatchesnum_matches. If all model instances exceeding MinScoreMinScoreMinScoreminScoremin_score in the image should be found, NumMatchesNumMatchesNumMatchesnumMatchesnum_matches must be set to 0. In rare cases, NumMatchesNumMatchesNumMatchesnumMatchesnum_matches must be set to a higher value than the required number of matches. This is the case if, for instance, a small MinScoreMinScoreMinScoreminScoremin_score is set.

When tracking the matches through the image pyramid, on each level, some less promising matches are rejected based on NumMatchesNumMatchesNumMatchesnumMatchesnum_matches. Thus, it is possible that some matches are rejected that would have had a higher score on the lowest pyramid level. Due to this, for example, the found match for NumMatchesNumMatchesNumMatchesnumMatchesnum_matches set to 1 might be different from the match with the highest score returned when setting NumMatchesNumMatchesNumMatchesnumMatchesnum_matches to 0 or > 1.

If multiple objects with a similar score are expected, but only the one with the highest score should be returned, it might be preferable to raise NumMatchesNumMatchesNumMatchesnumMatchesnum_matches, and then select the match with the highest score.

MaxOverlapMaxOverlapMaxOverlapmaxOverlapmax_overlap:

If the model exhibits symmetries it may happen that multiple instances with similar positions but different rotations are found in the image. The parameter MaxOverlapMaxOverlapMaxOverlapmaxOverlapmax_overlap determines by what fraction (i.e., a number between 0 and 1) two instances may at most overlap in order to consider them as different instances, and hence to be returned separately. If two instances overlap each other by more than MaxOverlapMaxOverlapMaxOverlapmaxOverlapmax_overlap only the best instance is returned. The calculation of the overlap is based on the smallest enclosing rectangle of arbitrary orientation (see smallest_rectangle2smallest_rectangle2SmallestRectangle2SmallestRectangle2smallest_rectangle2) of the found instances. If MaxOverlapMaxOverlapMaxOverlapmaxOverlapmax_overlap=0, the found instances may not overlap at all, while for MaxOverlapMaxOverlapMaxOverlapmaxOverlapmax_overlap=1 all instances are returned.

GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name, GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value:

With the generic parameters GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value it is possible to adjust parameters that typically do not have to be set by the user. By default the pose is extracted with high subpixel accuracy ('least_squares_very_high'"least_squares_very_high""least_squares_very_high""least_squares_very_high""least_squares_very_high") through a least-squares adjustment, i.e., by minimizing the distances of the model points to their corresponding image points. However, if no high accuracy is required by an application, the subpixel precise extraction can be reduced or switched off as it increases the processing time. Here, 'subpixel'"subpixel""subpixel""subpixel""subpixel" must be passed in GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and 'none'"none""none""none""none", 'least_squares'"least_squares""least_squares""least_squares""least_squares", 'least_squares_high'"least_squares_high""least_squares_high""least_squares_high""least_squares_high" for GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value. A further use of GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value is to override the discretization steps of the parameter space 'angle_step'"angle_step""angle_step""angle_step""angle_step", 'scale_r_step'"scale_r_step""scale_r_step""scale_r_step""scale_r_step" and 'scale_c_step'"scale_c_step""scale_c_step""scale_c_step""scale_c_step" that have been defined when the model was created in create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model.

As described in create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model the deformable matching algorithm searches exhaustively a basic set of parameters that are specified with AngleStartAngleStartAngleStartangleStartangle_start,AngleExtentAngleExtentAngleExtentangleExtentangle_extent, ScaleRMinScaleRMinScaleRMinscaleRMinscale_rmin,ScaleRMaxScaleRMaxScaleRMaxscaleRMaxscale_rmax,ScaleCMinScaleCMinScaleCMinscaleCMinscale_cmin and ScaleCMaxScaleCMaxScaleCMaxscaleCMaxscale_cmax. However, to allow a detection even when the object is imaged under perspective distortion, an additional transformation is estimated. This additional transformation transforms the model from the original search range to a bigger perspectively distorted one. By allowing perspective distortions, the risk of false positives is also increased. One possible use of the parameter GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name is to help discarding false positives that occur, if for instance a small score was specified in MinScoreMinScoreMinScoreminScoremin_score and the image contains significant clutter with similar shape as the model.

To restrict arbitrary perspective matches from occurring, the values 'angle_change_restriction'"angle_change_restriction""angle_change_restriction""angle_change_restriction""angle_change_restriction" and 'aniso_scale_change_restriction'"aniso_scale_change_restriction""aniso_scale_change_restriction""aniso_scale_change_restriction""aniso_scale_change_restriction" can be used in GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name. With 'angle_change_restriction'"angle_change_restriction""angle_change_restriction""angle_change_restriction""angle_change_restriction" the maximal tolerated angular distortion can be restricted. As default value is set, which allows arbitrary distortion. By setting 'angle_change_restriction'"angle_change_restriction""angle_change_restriction""angle_change_restriction""angle_change_restriction" to 0, no distortion is allowed at all. The set value should be within the interval [0, ]. This parameter tests, if the angle of 90 degree at the corners of the axis-aligned rectangle around the model points is changed by more than the corresponding GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value for the found instance of the model. Note that this parameter helps to restrict both affine (a shear mapping) and perspective parts of the transformation. As an example, with 'angle_change_restriction'"angle_change_restriction""angle_change_restriction""angle_change_restriction""angle_change_restriction" a square-like model can be prevented to match with a parallelogram or an arbitrary trapezium.

With the parameter 'aniso_scale_change_restriction'"aniso_scale_change_restriction""aniso_scale_change_restriction""aniso_scale_change_restriction""aniso_scale_change_restriction" the ratio of anisotropic scaling can be restricted (the smaller scale factor divided by the bigger scale factor). The value of this parameter ranges from the default value 0.0, where arbitrary distortion is allowed, to 1.0, where no distortion is allowed. One typical use for this parameter is to restrict for instance a square-like model to deform to a rectangular model.

NumLevelsNumLevelsNumLevelsnumLevelsnum_levels:

The number of pyramid levels used during the search is determined with NumLevelsNumLevelsNumLevelsnumLevelsnum_levels. If necessary, the number of levels is clipped to the range given when the deformable model was created with create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model. If NumLevelsNumLevelsNumLevelsnumLevelsnum_levels is set to 0, the number of pyramid levels specified in create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model is used.

GreedinessGreedinessGreedinessgreedinessgreediness:

The parameter GreedinessGreedinessGreedinessgreedinessgreediness determines how “greedily” the search should be carried out. If GreedinessGreedinessGreedinessgreedinessgreediness=0, a safe search heuristic is used, which finds the model if it is visible in the image and the other parameters are set appropriately. However, the search will be relatively time consuming in this case. If GreedinessGreedinessGreedinessgreedinessgreediness=1, an unsafe search heuristic is used, which may cause the model not to be found in rare cases, even though it is visible in the image. For GreedinessGreedinessGreedinessgreedinessgreediness=1, the maximum search speed is achieved. In almost all cases, the deformable model will be found for GreedinessGreedinessGreedinessgreedinessgreediness=0.9.

Output parameters in detail

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d:

The projective transformation (homographies) that encode the position of the found instances of the model are returned in HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d. In case that multiple objects are found, the different homographies are concatenated. A single homography can easily be extracted by tuple_select_range(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)tuple_select_range(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)TupleSelectRange(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)TupleSelectRange(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D)tuple_select_range(HomMat2D,Index*9,(Index+1)*9-1, SelectedHomMat2D). The different detection results are sorted in decreasing order of ScoreScoreScorescorescore. The row and column coordinates are the coordinates of the origin of the deformable model in the search image, which can be found by calling projective_trans_pixel(HomMat2D,0,0,Row,Column)projective_trans_pixel(HomMat2D,0,0,Row,Column)ProjectiveTransPixel(HomMat2D,0,0,Row,Column)ProjectiveTransPixel(HomMat2D,0,0,Row,Column)projective_trans_pixel(HomMat2D,0,0,Row,Column). By default, the origin is the center of gravity of the domain (region) of the image that was used to create the deformable model with create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model. A different origin can be set with set_deformable_model_originset_deformable_model_originSetDeformableModelOriginSetDeformableModelOriginset_deformable_model_origin. For visualization purposes, the model contours that are extracted by get_deformable_model_contoursget_deformable_model_contoursGetDeformableModelContoursGetDeformableModelContoursget_deformable_model_contours can be projected to the found location given HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d with projective_trans_contour_xldprojective_trans_contour_xldProjectiveTransContourXldProjectiveTransContourXldprojective_trans_contour_xld.

ScoreScoreScorescorescore:

Additionally, the score of each found instance is returned in ScoreScoreScorescorescore. The score is a number between 0 and 1, which is an approximate measure of how much of the model is visible in the image. If, for example, half of the model is occluded, the score cannot exceed 0.5.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Automatically parallelized on internal data level.

Parameters

ImageImageImageimageimage (input_object)  (multichannel-)image objectHImageHObjectHObjectHobject (byte / uint2)

Input image in which the model should be found.

ModelIDModelIDModelIDmodelIDmodel_id (input_control)  deformable_model HDeformableModel, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Handle of the model.

AngleStartAngleStartAngleStartangleStartangle_start (input_control)  angle.rad HTuplefloatHTupleHtuple (real) (double) (double) (double)

Smallest rotation of the model.

Default: -0.39

Suggested values: -3.14, -1.57, -0.79, -0.39, -0.20, 0.0

AngleExtentAngleExtentAngleExtentangleExtentangle_extent (input_control)  angle.rad HTuplefloatHTupleHtuple (real) (double) (double) (double)

Extent of the rotation angles.

Default: 0.78

Suggested values: 6.29, 3.14, 1.57, 0.79, 0.39, 0.0

Restriction: AngleExtent >= 0

ScaleRMinScaleRMinScaleRMinscaleRMinscale_rmin (input_control)  number HTuplefloatHTupleHtuple (real) (double) (double) (double)

Minimum scale of the model in row direction.

Default: 1.0

Suggested values: 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Restriction: ScaleRMin > 0

ScaleRMaxScaleRMaxScaleRMaxscaleRMaxscale_rmax (input_control)  number HTuplefloatHTupleHtuple (real) (double) (double) (double)

Maximum scale of the model in row direction.

Default: 1.0

Suggested values: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5

Restriction: ScaleRMax >= ScaleRMin

ScaleCMinScaleCMinScaleCMinscaleCMinscale_cmin (input_control)  number HTuplefloatHTupleHtuple (real) (double) (double) (double)

Minimum scale of the model in column direction.

Default: 1.0

Suggested values: 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Restriction: ScaleCMin > 0

ScaleCMaxScaleCMaxScaleCMaxscaleCMaxscale_cmax (input_control)  number HTuplefloatHTupleHtuple (real) (double) (double) (double)

Maximum scale of the model in column direction.

Default: 1.0

Suggested values: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5

Restriction: ScaleCMax >= ScaleCMin

MinScoreMinScoreMinScoreminScoremin_score (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Minimum score of the instances of the model to be found.

Default: 0.5

Suggested values: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Value range: 0 ≤ MinScore MinScore MinScore minScore min_score ≤ 1

Minimum increment: 0.01

Recommended increment: 0.05

NumMatchesNumMatchesNumMatchesnumMatchesnum_matches (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of instances of the model to be found (or 0 for all matches).

Default: 1

Suggested values: 0, 1, 2, 3, 4, 5, 10, 20

MaxOverlapMaxOverlapMaxOverlapmaxOverlapmax_overlap (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Maximum overlap of the instances of the model to be found.

Default: 1.0

Suggested values: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Value range: 0 ≤ MaxOverlap MaxOverlap MaxOverlap maxOverlap max_overlap ≤ 1

Minimum increment: 0.01

Recommended increment: 0.05

NumLevelsNumLevelsNumLevelsnumLevelsnum_levels (input_control)  integer(-array) HTupleMaybeSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of pyramid levels used in the matching (and lowest pyramid level to use if |NumLevelsNumLevelsNumLevelsnumLevelsnum_levels| = 2).

Default: 0

List of values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

GreedinessGreedinessGreedinessgreedinessgreediness (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

“Greediness” of the search heuristic (0: safe but slow; 1: fast but matches may be missed).

Default: 0.9

Suggested values: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Value range: 0 ≤ Greediness Greediness Greediness greediness greediness ≤ 1

Minimum increment: 0.01

Recommended increment: 0.05

GenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (input_control)  string-array HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)

The general parameter names.

Default: []

List of values: [], 'angle_change_restriction'"angle_change_restriction""angle_change_restriction""angle_change_restriction""angle_change_restriction", 'angle_step'"angle_step""angle_step""angle_step""angle_step", 'aniso_scale_change_restriction'"aniso_scale_change_restriction""aniso_scale_change_restriction""aniso_scale_change_restriction""aniso_scale_change_restriction", 'scale_c_step'"scale_c_step""scale_c_step""scale_c_step""scale_c_step", 'scale_r_step'"scale_r_step""scale_r_step""scale_r_step""scale_r_step", 'subpixel'"subpixel""subpixel""subpixel""subpixel"

GenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (input_control)  integer-array HTupleSequence[Union[int, float, str]]HTupleHtuple (integer / real / string) (int / long / double / string) (Hlong / double / HString) (Hlong / double / char*)

Values of the general parameters.

Default: []

List of values: [], 'least_squares'"least_squares""least_squares""least_squares""least_squares", 'least_squares_high'"least_squares_high""least_squares_high""least_squares_high""least_squares_high", 'least_squares_very_high'"least_squares_very_high""least_squares_very_high""least_squares_very_high""least_squares_very_high", 'none'"none""none""none""none"

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (output_control)  hom_mat2d(-array) HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Homographies between model and found instances.

ScoreScoreScorescorescore (output_control)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Score of the found instances of the model.

Result

If the parameters are valid, the operator find_planar_uncalib_deformable_modelfind_planar_uncalib_deformable_modelFindPlanarUncalibDeformableModelFindPlanarUncalibDeformableModelfind_planar_uncalib_deformable_model returns the value 2 ( H_MSG_TRUE) . If necessary an exception is raised.

Possible Predecessors

create_planar_uncalib_deformable_modelcreate_planar_uncalib_deformable_modelCreatePlanarUncalibDeformableModelCreatePlanarUncalibDeformableModelcreate_planar_uncalib_deformable_model, read_deformable_modelread_deformable_modelReadDeformableModelReadDeformableModelread_deformable_model

Alternatives

find_planar_calib_deformable_modelfind_planar_calib_deformable_modelFindPlanarCalibDeformableModelFindPlanarCalibDeformableModelfind_planar_calib_deformable_model

Module

Matching