Operator Reference

hom_mat2d_slantT_hom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant (Operator)

hom_mat2d_slantT_hom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant — Add a slant to a homogeneous 2D transformation matrix.

Signature

hom_mat2d_slant( : : HomMat2D, Theta, Axis, Px, Py : HomMat2DSlant)

Herror T_hom_mat2d_slant(const Htuple HomMat2D, const Htuple Theta, const Htuple Axis, const Htuple Px, const Htuple Py, Htuple* HomMat2DSlant)

void HomMat2dSlant(const HTuple& HomMat2D, const HTuple& Theta, const HTuple& Axis, const HTuple& Px, const HTuple& Py, HTuple* HomMat2DSlant)

HHomMat2D HHomMat2D::HomMat2dSlant(const HTuple& Theta, const HString& Axis, const HTuple& Px, const HTuple& Py) const

HHomMat2D HHomMat2D::HomMat2dSlant(double Theta, const HString& Axis, double Px, double Py) const

HHomMat2D HHomMat2D::HomMat2dSlant(double Theta, const char* Axis, double Px, double Py) const

HHomMat2D HHomMat2D::HomMat2dSlant(double Theta, const wchar_t* Axis, double Px, double Py) const   ( Windows only)

static void HOperatorSet.HomMat2dSlant(HTuple homMat2D, HTuple theta, HTuple axis, HTuple px, HTuple py, out HTuple homMat2DSlant)

HHomMat2D HHomMat2D.HomMat2dSlant(HTuple theta, string axis, HTuple px, HTuple py)

HHomMat2D HHomMat2D.HomMat2dSlant(double theta, string axis, double px, double py)

def hom_mat2d_slant(hom_mat_2d: Sequence[float], theta: Union[float, int], axis: str, px: Union[float, int], py: Union[float, int]) -> Sequence[float]

Description

hom_mat2d_slanthom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant adds a slant by the angle ThetaThetaThetathetatheta to the homogeneous 2D transformation matrix HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d and returns the resulting matrix in HomMat2DSlantHomMat2DSlantHomMat2DSlanthomMat2DSlanthom_mat_2dslant. A slant is an affine transformation in which one coordinate axis remains fixed, while the other coordinate axis is rotated counterclockwise by an angle ThetaThetaThetathetatheta. The parameter AxisAxisAxisaxisaxis determines which coordinate axis is slanted. For AxisAxisAxisaxisaxis = 'x'"x""x""x""x", the x-axis is slanted and the y-axis remains fixed, while for AxisAxisAxisaxisaxis = 'y'"y""y""y""y" the y-axis is slanted and the x-axis remains fixed. The slanting is performed relative to the global (i.e., fixed) coordinate system; this corresponds to the following chains of transformation matrices:

The point (PxPxPxpxpx,PyPyPypypy) is the fixed point of the transformation, i.e., this point remains unchanged when transformed using HomMat2DSlantHomMat2DSlantHomMat2DSlanthomMat2DSlanthom_mat_2dslant. To obtain this behavior, first a translation is added to the input transformation matrix that moves the fixed point onto the origin of the global coordinate system. Then, the slant is added, and finally a translation that moves the fixed point back to its original position. This corresponds to the following chain of transformations for AxisAxisAxisaxisaxis = 'x'"x""x""x""x":

To perform the transformation in the local coordinate system, i.e., the one described by HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d, use hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local.

Attention

It should be noted that homogeneous transformation matrices refer to a general right-handed mathematical coordinate system. If a homogeneous transformation matrix is used to transform images, regions, XLD contours, or any other data that has been extracted from images, the row coordinates of the transformation must be passed in the x coordinates, while the column coordinates must be passed in the y coordinates. Consequently, the order of passing row and column coordinates follows the usual order (RowRowRowrowrow,ColumnColumnColumncolumncolumn). This convention is essential to obtain a right-handed coordinate system for the transformation of iconic data, and consequently to ensure in particular that rotations are performed in the correct mathematical direction.

Note that homogeneous matrices are stored row-by-row as a tuple; the last row is usually not stored because it is identical for all homogeneous matrices that describe an affine transformation. For example, the homogeneous matrix is stored as the tuple [ra, rb, tc, rd, re, tf]. However, it is also possible to process full 3×3 matrices, which represent a projective 2D transformation.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Processed without parallelization.

Parameters

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (input_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Input transformation matrix.

ThetaThetaThetathetatheta (input_control)  angle.rad HTupleUnion[float, int]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Slant angle.

Default: 0.78

Suggested values: 0.1, 0.2, 0.3, 0.4, 0.78, 1.57, 3.14

Value range: 0 ≤ Theta Theta Theta theta theta ≤ 6.28318530718

AxisAxisAxisaxisaxis (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Coordinate axis that is slanted.

Default: 'x' "x" "x" "x" "x"

List of values: 'x'"x""x""x""x", 'y'"y""y""y""y"

PxPxPxpxpx (input_control)  point.x HTupleUnion[float, int]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Fixed point of the transformation (x coordinate).

Default: 0

Suggested values: 0, 16, 32, 64, 128, 256, 512, 1024

PyPyPypypy (input_control)  point.y HTupleUnion[float, int]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Fixed point of the transformation (y coordinate).

Default: 0

Suggested values: 0, 16, 32, 64, 128, 256, 512, 1024

HomMat2DSlantHomMat2DSlantHomMat2DSlanthomMat2DSlanthom_mat_2dslant (output_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Output transformation matrix.

Result

If the parameters are valid, the operator hom_mat2d_slanthom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant returns 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

Possible Predecessors

hom_mat2d_identityhom_mat2d_identityHomMat2dIdentityHomMat2dIdentityhom_mat2d_identity, hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslatehom_mat2d_translate, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScalehom_mat2d_scale, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, hom_mat2d_slanthom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant, hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflecthom_mat2d_reflect

Possible Successors

hom_mat2d_translatehom_mat2d_translateHomMat2dTranslateHomMat2dTranslatehom_mat2d_translate, hom_mat2d_scalehom_mat2d_scaleHomMat2dScaleHomMat2dScalehom_mat2d_scale, hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, hom_mat2d_slanthom_mat2d_slantHomMat2dSlantHomMat2dSlanthom_mat2d_slant, hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflecthom_mat2d_reflect

See also

hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local

Module

Foundation