Operator Reference

hom_mat2d_reflect_localT_hom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local (Operator)

hom_mat2d_reflect_localT_hom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local — Add a reflection to a homogeneous 2D transformation matrix.

Signature

hom_mat2d_reflect_local( : : HomMat2D, Px, Py : HomMat2DReflect)

Herror T_hom_mat2d_reflect_local(const Htuple HomMat2D, const Htuple Px, const Htuple Py, Htuple* HomMat2DReflect)

void HomMat2dReflectLocal(const HTuple& HomMat2D, const HTuple& Px, const HTuple& Py, HTuple* HomMat2DReflect)

HHomMat2D HHomMat2D::HomMat2dReflectLocal(const HTuple& Px, const HTuple& Py) const

HHomMat2D HHomMat2D::HomMat2dReflectLocal(double Px, double Py) const

static void HOperatorSet.HomMat2dReflectLocal(HTuple homMat2D, HTuple px, HTuple py, out HTuple homMat2DReflect)

HHomMat2D HHomMat2D.HomMat2dReflectLocal(HTuple px, HTuple py)

HHomMat2D HHomMat2D.HomMat2dReflectLocal(double px, double py)

def hom_mat2d_reflect_local(hom_mat_2d: Sequence[float], px: Union[float, int], py: Union[float, int]) -> Sequence[float]

Description

hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local adds a reflection about the axis given by the two points (0,0) and (PxPxPxpxpx,PyPyPypypy) to the homogeneous 2D transformation matrix HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d and returns the resulting matrix in HomMat2DReflectHomMat2DReflectHomMat2DReflecthomMat2DReflecthom_mat_2dreflect. The reflection is described by a 2×2 reflection matrix M. In contrast to hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflecthom_mat2d_reflect, it is performed relative to the local coordinate system, i.e., the coordinate system described by HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d; this corresponds to the following chain of transformation matrices:

where v = (-PyPyPypypy,PxPxPxpxpx)^T is the normal vector to the axis.

The axis (0,0)-(PxPxPxpxpx,PyPyPypypy) is fixed in the transformation, i.e., the points on the axis remain unchanged when transformed using HomMat2DReflectHomMat2DReflectHomMat2DReflecthomMat2DReflecthom_mat_2dreflect.

Attention

It should be noted that homogeneous transformation matrices refer to a general right-handed mathematical coordinate system. If a homogeneous transformation matrix is used to transform images, regions, XLD contours, or any other data that has been extracted from images, the row coordinates of the transformation must be passed in the x coordinates, while the column coordinates must be passed in the y coordinates. Consequently, the order of passing row and column coordinates follows the usual order (RowRowRowrowrow,ColumnColumnColumncolumncolumn). This convention is essential to obtain a right-handed coordinate system for the transformation of iconic data, and consequently to ensure in particular that rotations are performed in the correct mathematical direction.

Note that homogeneous matrices are stored row-by-row as a tuple; the last row is usually not stored because it is identical for all homogeneous matrices that describe an affine transformation. For example, the homogeneous matrix is stored as the tuple [ra, rb, tc, rd, re, tf]. However, it is also possible to process full 3×3 matrices, which represent a projective 2D transformation.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Processed without parallelization.

Parameters

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (input_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Input transformation matrix.

PxPxPxpxpx (input_control)  point.x HTupleUnion[float, int]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Point that defines the axis (x coordinate).

Default: 16

Suggested values: 0, 16, 32, 64, 128, 256, 512, 1024

PyPyPypypy (input_control)  point.y HTupleUnion[float, int]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Point that defines the axis (y coordinate).

Default: 32

Suggested values: 0, 16, 32, 64, 128, 256, 512, 1024

HomMat2DReflectHomMat2DReflectHomMat2DReflecthomMat2DReflecthom_mat_2dreflect (output_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Output transformation matrix.

Result

hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local returns 2 ( H_MSG_TRUE) if the point (PxPxPxpxpx,PyPyPypypy) is not (0,0). If necessary, an exception is raised.

Possible Predecessors

hom_mat2d_identityhom_mat2d_identityHomMat2dIdentityHomMat2dIdentityhom_mat2d_identity, hom_mat2d_translate_localhom_mat2d_translate_localHomMat2dTranslateLocalHomMat2dTranslateLocalhom_mat2d_translate_local, hom_mat2d_scale_localhom_mat2d_scale_localHomMat2dScaleLocalHomMat2dScaleLocalhom_mat2d_scale_local, hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local, hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local, hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local

Possible Successors

hom_mat2d_translate_localhom_mat2d_translate_localHomMat2dTranslateLocalHomMat2dTranslateLocalhom_mat2d_translate_local, hom_mat2d_scale_localhom_mat2d_scale_localHomMat2dScaleLocalHomMat2dScaleLocalhom_mat2d_scale_local, hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local, hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local, hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local

See also

hom_mat2d_reflecthom_mat2d_reflectHomMat2dReflectHomMat2dReflecthom_mat2d_reflect

Module

Foundation