Operator Reference

hom_mat2d_rotate_localT_hom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local (Operator)

hom_mat2d_rotate_localT_hom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local — Add a rotation to a homogeneous 2D transformation matrix.

Signature

hom_mat2d_rotate_local( : : HomMat2D, Phi : HomMat2DRotate)

Herror T_hom_mat2d_rotate_local(const Htuple HomMat2D, const Htuple Phi, Htuple* HomMat2DRotate)

void HomMat2dRotateLocal(const HTuple& HomMat2D, const HTuple& Phi, HTuple* HomMat2DRotate)

HHomMat2D HHomMat2D::HomMat2dRotateLocal(const HTuple& Phi) const

HHomMat2D HHomMat2D::HomMat2dRotateLocal(double Phi) const

static void HOperatorSet.HomMat2dRotateLocal(HTuple homMat2D, HTuple phi, out HTuple homMat2DRotate)

HHomMat2D HHomMat2D.HomMat2dRotateLocal(HTuple phi)

HHomMat2D HHomMat2D.HomMat2dRotateLocal(double phi)

def hom_mat2d_rotate_local(hom_mat_2d: Sequence[float], phi: Union[float, int]) -> Sequence[float]

Description

hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local adds a rotation by the angle PhiPhiPhiphiphi to the homogeneous 2D transformation matrix HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d and returns the resulting matrix in HomMat2DRotateHomMat2DRotateHomMat2DRotatehomMat2DRotatehom_mat_2drotate. The rotation is described by a 2×2 rotation matrix R. In contrast to hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate, it is performed relative to the local coordinate system, i.e., the coordinate system described by HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d; this corresponds to the following chain of transformation matrices:

The fixed point of the transformation is the origin of the local coordinate system, i.e., this point remains unchanged when transformed using HomMat2DRotateHomMat2DRotateHomMat2DRotatehomMat2DRotatehom_mat_2drotate.

Attention

It should be noted that homogeneous transformation matrices refer to a general right-handed mathematical coordinate system. If a homogeneous transformation matrix is used to transform images, regions, XLD contours, or any other data that has been extracted from images, the row coordinates of the transformation must be passed in the x coordinates, while the column coordinates must be passed in the y coordinates. Consequently, the order of passing row and column coordinates follows the usual order (RowRowRowrowrow,ColumnColumnColumncolumncolumn). This convention is essential to obtain a right-handed coordinate system for the transformation of iconic data, and consequently to ensure in particular that rotations are performed in the correct mathematical direction.

Note that homogeneous matrices are stored row-by-row as a tuple; the last row is usually not stored because it is identical for all homogeneous matrices that describe an affine transformation. For example, the homogeneous matrix is stored as the tuple [ra, rb, tc, rd, re, tf]. However, it is also possible to process full 3×3 matrices, which represent a projective 2D transformation.

Execution Information

  • Multithreading type: reentrant (runs in parallel with non-exclusive operators).
  • Multithreading scope: global (may be called from any thread).
  • Processed without parallelization.

Parameters

HomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (input_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Input transformation matrix.

PhiPhiPhiphiphi (input_control)  angle.rad HTupleUnion[float, int]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Rotation angle.

Default: 0.78

Suggested values: 0.1, 0.2, 0.3, 0.4, 0.78, 1.57, 3.14

Value range: 0 ≤ Phi Phi Phi phi phi ≤ 6.28318530718

HomMat2DRotateHomMat2DRotateHomMat2DRotatehomMat2DRotatehom_mat_2drotate (output_control)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Output transformation matrix.

Result

If the parameters are valid, the operator hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local returns 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

Possible Predecessors

hom_mat2d_identityhom_mat2d_identityHomMat2dIdentityHomMat2dIdentityhom_mat2d_identity, hom_mat2d_translate_localhom_mat2d_translate_localHomMat2dTranslateLocalHomMat2dTranslateLocalhom_mat2d_translate_local, hom_mat2d_scale_localhom_mat2d_scale_localHomMat2dScaleLocalHomMat2dScaleLocalhom_mat2d_scale_local, hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local, hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local, hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local

Possible Successors

hom_mat2d_translate_localhom_mat2d_translate_localHomMat2dTranslateLocalHomMat2dTranslateLocalhom_mat2d_translate_local, hom_mat2d_scale_localhom_mat2d_scale_localHomMat2dScaleLocalHomMat2dScaleLocalhom_mat2d_scale_local, hom_mat2d_rotate_localhom_mat2d_rotate_localHomMat2dRotateLocalHomMat2dRotateLocalhom_mat2d_rotate_local, hom_mat2d_slant_localhom_mat2d_slant_localHomMat2dSlantLocalHomMat2dSlantLocalhom_mat2d_slant_local, hom_mat2d_reflect_localhom_mat2d_reflect_localHomMat2dReflectLocalHomMat2dReflectLocalhom_mat2d_reflect_local

See also

hom_mat2d_rotatehom_mat2d_rotateHomMat2dRotateHomMat2dRotatehom_mat2d_rotate

Module

Foundation